In recent times, the application of small-scale horizontal axis wind turbines (SHAWTs) has drawn interest in certain areas where the energy demand is minimal. These turbines, operating mostly at low Reynolds number (Re) and low tip speed ratio (λ) applications, can be used as stand-alone systems. The present study aims at the design, development, and testing of a series of SHAWT models. On the basis of aerodynamic characteristics, four SHAWT models viz., M1, M2, M3, and M4 composed of E216, SG6043, NACA63415, and NACA0012 airfoils, respectively have been developed. Initially, the rotors are designed through blade element momentum theory (BEMT), and their power coefficient have been evaluated. Thence, the developed rotors are tested in a low-speed wind tunnel to find their rotational frequency, power and power coefficient at design and off-design conditions. From BEMT analysis, M1 shows a maximum power coefficient (Cpmax) of 0.37 at λ = 2.5. The subsequent wind tunnel tests on M1, M2, M3, and M4 at 9 m/s show the Cpmax values to be 0.34, 0.30, 0.28, and 0.156, respectively. Thus, from the experiments, the M1 rotor is found to be favourable than the other three rotors, and its Cpmax value is found to be about 92% of BEMT prediction. Further, the effect of pitch angle (θp) on Cp of the model rotors is also examined, where M1 is found to produce a satisfactory performance within ±5° from the design pitch angle (θp, design).
The small-scale horizontal-axis wind turbines (SHAWTs) have emerged as the promising alternative energy resource for the off-grid electrical power generation. These turbines primarily operate at low Reynolds number, low wind speed, and low tip speed ratio conditions. Under such circumstances, the airfoil selection and blade design of a SHAWT becomes a challenging task. The present work puts forward the necessary steps starting from the aerofoil selection to the blade design and analysis by means of blade element momentum theory (BEMT) for the development of four model rotors composed of E216, SG6043, NACA63415, and NACA0012 airfoils. This analysis shows the superior performance of the model rotor with E216 airfoil in comparison to other three models. However, the subsequent wind tunnel study with the E216 model, a marginal drop in its performance due to mechanical losses has been observed.
In recent times, the small wind farms consisting of small-scale horizontal-axis wind turbines (SHAWTs) have emerged as a suitable candidate for electric power generating system. In view of this, an experimental study on the arrays of two SHAWTs has been performed in a wind tunnel to find the individual/combined performance(s) along with the downstream wake assessment. The rotor blades composed of Eppler E216 airfoil and of radius (=120 mm) are designed using the blade element momentum theory. The operational limit of tip speed ratio (λ) is kept between 0.5 and 6. The upstream turbine (UsT) is capable to produce a maximum power coefficient (Cpmax) of 0.30 at a wind speed U=8 m/s, whereas at the same wind speed, the downstream turbine (DsT) produces Cpmax values of 0.12, 0.13, and 0.15 when installed at a distance of 6R, 8R and 10R from the UsT, respectively. Another notable feature is the change in operational limit of λ for DsT due to the wake of UsT. The streamwise velocity measurement at the different downstream locations of UsT shows the formation of W-shape velocity deficit within the near wake regime that loses its shape as the distance downstream goes beyond 12R due to ~60-70% flow recovery.
In the present research article results on wind turbine blade tip vortex have been presented, the measurements have been done behind a model scale of horizontal axis wind turbine rotor. The rotor used for flow characterization is a three-bladed having NACA0012 cross-section, the study has been performed for low range tip speed ratio of 0–2 and wind speeds range of 3–6 m/s. The investigation has been conducted specifically to near wake regime, which is often expressed as the region of regular helical vortex structures. Although this nature of regular helical vortex pattern has always been a question of debate with respect to changes in the flow condition, rotor geometry and point of measurements. A systematic experiment was done mainly on the frequency of vortex shedding through hot-wire anemometry (HWA), and the corresponding frequency is express in terms of Strouhal number. Present article work within near wake regime includes tip vortex shedding stability analysis for different blade pitch angle and flow condition. From the systematic experimental observation, the evaluated data indicate that the Strouhal number has an incremental trend when the blade pitch angle is close to 40°, and above it inconsistency in frequency response is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.