Onshore mud volcanoes are rare geological phenomena, which in Nigeria were reported for the first time few years ago in the Upper Benue Trough. In this study a detail geological mapping of the area of mud volcanoes occurrence was carried out, with the primary aim of defining their relationship, if any, to the structural geology there. The systematic field reconnaissance included field observations of the structural features, as well as analysis of the location and distribution of the onshore mud volcanoes, marking their locations on the topographic and geological maps, analysis of the aerial photographs and satellite images. The study area covered the central part of the Upper Benue Trough where the onshore mud volcanoes were found. The study area is the part of a sedimentary basin comprising Cretaceous clastic rocks that have been deformed intensively by a network of faults often embedded in the underlying Precambrian basement. This network of faults underwent a rejuvenation period from the Aptian to the Palaeocene. The most prominent tectonic structure in the study area is the NE -SW trending Kaltungo Fault Zone, however, there are other minor faults with N -S and NW -SE trends. This study shows that the mud volcanoes found in the study area are usually located near or within fault zones, within the outcropping Upper Cretaceous Yolde Formation and Upper Bima Sandstone, both of which were deformed by the Kaltungo faults, as well as by other minor faults.Worldwide, incidences of onshore mud volcano formation are usually attributed to areas of tectonic activity, rapid sedimentation or hydrocarbon occurrence. In this study, the interpretation of the field observations and mapping results, combined with information on the structural evolution of the study area and seismic pattern (very scarce), have led to the conclusion that the location of onshore mud volcanoes in the Upper Benue Trough, being located along the fault zones, is structurally controlled. The close relationship between mud volcano location and the structural framework of the area may be interpreted as one of several possible subsurface geological responses to present tectonic activity.
The present work was aimed at assessing the surface and groundwater quality of the area within and around Obajana using physico-chemical characteristics. Surface and groundwater samples were collected at the peak of dry season in March, 2013, from 24 locations within Obajana and its surrounding areas and were subjected to a comprehensive quality analysis. The following parameters were considered; pH, total dissolved solids, electrical conductivity, turbidity, dissolved oxygen, redox, potassium, sodium, calcium, magnesium, iron, zinc, chloride, nitrate, sulphate and bi-carbonate. Different statistical tools were used to analyse the results. Piper diagrams and Schoeller plots were used to suggest models for predicting water quality. Results from the physico-chemical analysis revealed that the concentrations of the analyzed parameters were within the acceptable limits for drinking water recommended by the World Health Organisation except for iron which had elevated concentration in one location. Surface and groundwater within Obajana and environs are thus considered safe for drinking and domestic use with respect to these analyzed parameters but needs to be protected from the perils of contamination by pollution from the continuous production of cement from the cement company over time. Plots on Piper and Schoeller diagrams indicate a Ca-Mg-HCO 3 -water type.
The mineralogical studies of clay from the onshore mud volcanoes discovered in parts of the Upper Benue Trough of Nigeria provide a clue about the geological formation from which the extruded mud originates. The study area is a part of the Cretaceous Upper Benue Trough filled with Early Cretaceous continental deposits and Late Cretaceous marine deposits, having a history of magmatism dating from the Albian to the Pleistocene. The study approach involves integrated inorganic geochemical analysis of the samples to reveal their composition and origin. The results of XRD analysis of the fresh clays from the mud volcano revealed the presence of quartz, kaolinite, and other clay minerals (illite-smectite), feldspars, and in much lower quantities, other accessory minerals including muscovite, evaporites, calcite and dolomite, trona, barite, goethite. The saprolite samples are composed mainly of quartz, kaolinite, smectite-illite associations, and feldspars, traces of goethite, calcite, and evaporate minerals (sylvite, halite). The presence of calcite, dolomite, sylvite, and halite suggests the marine origin of the rocks, while trona mineral is a non-marine evaporate. The coexistence of these minerals in some of the analyzed samples suggests the deposition of sediments in a transitional environment of deposition. Traces of marine minerals are present in some of the samples but completely absent in others collected from another site. This suggests that the source rock formations from which the material originated are within the Upper Bima Sandstone interpreted as being deposited in a non-marine environment or the Yolde Formation, which is known as a transitional unit (transitional between the outcropping continental Upper Bima Sandstone and marine Pindiga Formation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.