We undertook numerical and experimental studies to develop a better incineration method for the destruction of CCl4. A phenomenological model for the turbulent reaction of CCl4, including a flame inhibition feature, has been successfully incorporated into a commercial code, simulating the incineration processes of this compound. The gaseous flow solution was obtained using SIMPLEST, a derivative of Patankar's SIMPLE algorithm, with a k-epsilon turbulence model. A modified fast chemistry turbulent reaction model was developed to describe the flame inhibition due to the presence of CCl4, considering the corresponding burning velocity data of these mixtures. An experiment was carried out on a small-scale, transportable, dump-type incinerator, which warrants a sufficient residence time and effective turbulent mixing by the formation of a strong recirculation region in a combustor. To this end, the specific configuration of the incinerator was manufactured to consist of two opposing jets and a rearward facing step. The calculated data were in close agreement with the experimental data for the concentrations of major species, such as CCl4, and HCl, together with the temperature profiles. The dump incinerator satisfied the orders required by the EPA of 99.99% ("4 nines") DRE for hazardous waste incinerators.
The purpose of this study was to analyze the sensitivity of meteorological fields and the variation of concentration of particulate matters (PMs) due to aerosol schemes and dust options within the WRF-Chem model to estimate Asian dusts affected on 29 May 2008 in the Korean peninsula. The anthropogenic emissions within the model were adopted by the 0.5 o
×0.5o RETRO of the global emissions, and the photolysis option was by Fast-J photolysis. Also, three scenarios such as the RADM2 chemical mechanism and MADE/SORGAM aerosol, the MOSAIC 8 section aerosol, and the GOCART dust erosion were simulated for calculating Asian dust emissions. As a result, the scenario of the RADM2 chemical mechanism & MADE/SORGAM aerosol depicted higher concentration than the others' in both Asian dusts and the background concentration of PMs. By comparing of the daily mean of PM10 measured at each air quality monitoring site in Seoul with the scenario results, the correlation coefficient was 0.67, and the root mean square error was 44 µg m −3. In addition, the air temperature, the wind speed, the planetary boundary layer height, and the outgoing longwave radiation were simulated under conditions of no chemical option with these three scenarios within the WRF or WRF-Chem model. Both the spatial distributions of the PBL height and the wind speed of u component among the meteorological factors were similar to those of the Asia dusts in range of 1,800-3,000 m and 2-16 m s −1 , respectively. And, it was shown that both scenarios of the RADM2 chemical mechanism and MADE/SORGAM aerosol and the GOCART dust erosion were interacted on-line between meteorological factors and Asian dusts or aerosols within the model because the outgoing long-wave radiation was changed to lower than the others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.