Abstract. Lagerstroemia ovalifolia Teijsm. & Binn. has traditionally been used as an herbal medicine and possesses anti-inflammatory properties. However, the mechanisms underlying its anti-inflammatory effects remain poorly understood. For this purpose, we aimed to investigate the effects of methanolic extract of L. ovalifolia (LOME) on nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) production, as well as the underlying molecular mechanisms responsible for these effects, in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We examined the effects of LOME on the production of NO and PGE 2 in LPS-stimulated RAW264.7 cells. To explore the anti-inflammatory mechanisms of LOME, we measured the mRNA or protein expression of the pro-inflammatory mediators induced by LOME in the LPS-stimulated RAW264.7 cells. LOME significantly inhibited the production of NO, PGE 2 , interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) in LPS-stimulated RAW264.7 cells. Moreover, LOME suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and inhibited the phosphorylation of the mitogen-activated protein kinases (MAPKs), with a reduction in the nuclear translocation of nuclear factor (NF)-κB in LPS-stimulated RAW264.7 cells. Taken together, these findings suggest that LOME may exert anti-inflammatory effects in vitro in LPS-stimulated RAW264.7 macrophages and thus, may have potential for use as an adjuvant treatment of inflammatory diseases.
Two new lactones, litsealactone A (1) and litsealactone B (2), were isolated from the leaves of Litsea japonica, together with three known lactones, hamabiwalactone A (3), hamabiwalactone B (4), and akolactone B (5). Hamabiwalactone B (4) and akolactone B (5) significantly inhibited complement activity in an in vitro anti-complement assay, with IC(50) values of 149 and 58 muM, respectively.
Mucus overproduction is a fundamental hallmark of COPD that is caused by exposure to cigarette smoke. MUC5AC is one of the main mucin genes expressed in the respiratory epithelium, and its transcriptional upregulation often correlates with increased mucus secretion. Calcium-sensing receptor (CaSR) antagonists have been reported to possess anti-inflammatory effects. The purpose of the present study was to investigate the protective role of NPS2143, a selective CaSR antagonist on cigarette smoke extract (CSE)-stimulated NCI-H292 mucoepidermoid human lung cells. Treatment of NPS2143 significantly inhibited the expression of MUC5AC in CSE-stimulated H292 cells. NPS2143 reduced the expression of MMP-9 in CSE-stimulated H292 cells. NPS2143 also decreased the release of proinflammatory cytokines such as IL-6 and TNF-α in CSE-stimulated H292 cells. Furthermore, NPS2143 attenuated the activation of MAPKs (JNK, p38, and ERK) and inhibited the nuclear translocation of NF-κB in CSE-stimulated H292 cells. These results indicate that NPS2143 had a therapeutic potential in COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.