We analyzed the evolution of H9 influenza viruses isolated from Korean chicken farms from 2002 to 2004. Korean H9 viruses formed two antigenically distinct groups: those isolated from 1996 to mid-2003, and those isolated from late 2003 through 2004. Most of the 2004 isolates showed greater cross-reactivity with the second group than with the first group. Phylogenetic analysis of the 12 viruses studied revealed three genotypes of H9N2 viruses and showed that reassortment had occurred. One isolate, Ck/Kor/164/04, belonged to the H9N8 subtype. Its HA and PB1 genes were similar to those of the H9N2 viruses, but its other genes were closely related to H3N8 viruses. This report is the first (to our knowledge) of H9N8 infection in this host. The pathogenicity of the early isolates altered due to antigenic drift and reassortment, leading to H9 avian influenza viruses in Korea that potentially can expand their host range to mammalians.
Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype have spread since 2003 in poultry and wild birds in Asia, Europe and Africa. In Korea, the highly pathogenic H5N1 avian influenza outbreaks took place in 2003/2004, 2006/2007 and 2008. As the 2006/2007 isolates differ phylogenetically from the 2003/2004 isolates, we assessed the clinical responses of chickens, ducks and quails to intranasal inoculation of the 2006/2007 index case virus, A/chicken/Korea/IS/06. All the chickens and quails died on 3 days and 3-6 days post-inoculation (DPI), respectively, whilst the ducks only showed signs of mild depression. The uninoculated chickens and quails placed soon after with the inoculated flock died on 5.3 and 7.5 DPI, respectively. Both oropharyngeal and cloacal swabs were taken for all three species during various time intervals after inoculation. It was found that oropharyngeal swabs showed higher viral titers than in cloacal swabs applicable to all three avian species. The chickens and quails shed the virus until they died (up to 3 to 6 days after inoculation, respectively) whilst the ducks shed the virus on 2-4 DPI. The postmortem tissues collected from the chickens and quails on day 3 and days 4-5 and from clinically normal ducks that were euthanized on day 4 contained the virus. However, the ducks had significantly lower viral titers than the chickens or quails. Thus, the three avian species varied significantly in their clinical signs, mortality, tissue virus titers, and duration of virus shedding. Our observations suggest that duck and quail farms should be monitored particularly closely for the presence of HPAIV so that further virus transmission to other avian or mammalian hosts can be prevented.
The H9N2 subtype low pathogenic avian influenza is one of the most prevalent avian diseases worldwide, and was first documented in 1996 in Korea. This disease caused serious economic loss in Korea's poultry industry.In order to develop an oil-based inactivated vaccine, a virus that had been isolated in 2001 (A/chicken/Korea/01310/2001) was selected based on its pathogenic, antigenic, and genetic properties. However, in animal experiments, the efficacy of the vaccine was found to be very low without concentration of the antigen (27 to 210 hemagglutinin unit). In order to overcome the low productivity, we passaged the vaccine candidate virus to chicken eggs. After the 20th passage, the virus was approximately ten times more productive compared with the parent virus. For the most part, the passaged virus maintained the hemagglutinin cleavage site amino acid motif (PATSGR/GLF) and had only three amino acid changes (T133N, V216G, E439D, H3 numbering) in the hemagglutinin molecule, as well as 18 amino acid deletions (55-72) and one amino acid change (E54D) in the NA stalk region. The amino acid changes did not significantly affect the antigenicity of the vaccine virus when tested by hemagglutination inhibition assay. Though not complete, the vaccine produced after the 20th passage of the virus (01310 CE20) showed good protection against a homologous and recent Korean isolate (A/chicken/Korea/Q30/2004) in specific pathogen- free chickens.The vaccine developed in this study would be helpful for controlling the H9N2 LPAI in Korea.
winter season in South Korea, several outbreaks of highly pathogenic avian infl uenza virus (H5N1) were confi rmed among domestic poultry and in migratory bird habitats. Phylogenetic analysis showed that all isolates were closely related and that all belong to the A/ bar-headed goose/Qinghai/5/2005-like lineage rather than the A/chicken/Korea/ES/2003-like lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.