We report a systematic study by 75 As nuclear-quadrupole resonance in LaFeAsO1−xFx. The antiferromagnetic spin fluctuation (AFSF) found above the magnetic ordering temperature TN = 58 K for x = 0.03 persists in the regime 0.04 ≤ x ≤ 0.08 where superconductivity sets in. A domeshaped x-dependence of the superconducting transition temperature Tc is found, with the highest Tc = 27 K at x = 0.06 which is realized under significant AFSF. With increasing x further, the AFSF decreases, and so does Tc. These features resemble closely the cuprates La2−xSrxCuO4. In x = 0.06, the spin-lattice relaxation rate (1/T1) below Tc decreases exponentially down to 0.13 Tc, which unambiguously indicates that the energy gaps are fully-opened. The temperature variation of 1/T1 below Tc is rendered nonexponential for other x by impurity scattering.
Neuromedin B and neuromedin C are novel decapeptides that have recently been isolated from porcine spinal cord and canine intestinal mucosa and show striking sequence homology with bombesin and gastrin-releasing peptide (GRP-27) at the carboxyl-terminal region. The effects of synthetic neuromedin B and C on exocrine pancreatic function and insulin release have been compared with bombesin and GRP-27 in isolated pancreatic acini and isolated perfused pancreas in rat. Neuromedin B and C as well as bombesin and GRP-27 were able to cause stimulation of amylase release. The relative efficacy of neuromedin B, C, bombesin, and GRP-27 was the same as that of cholecystokinin octapeptide (CCK-8). Bombesin and GRP-27 were equipotent, and both were approximately 15-fold less potent than CCK-8. Neuromedin C was approximately 2-fold more potent, whereas neuromedin B as approximately 10-fold less potent than bombesin and GRP-27. All of these peptides stimulated insulin release that was limited to the first 3 min of a 20-min perfusion. However, GRP-27 and its related peptides were weak stimulants of insulin release compared with their abilities to stimulate exocrine pancreatic secretion. Bombesin and neuromedin B id not stimulate insulin release at doses stimulating pancreatic exocrine secretion. Neuromedin B was also approximately 10-fold less potent than neuromedin C, bombesin, and GRP-27 in eliciting insulin secretion. Because bombesin-like immunoreactivity is found to be present in nerves in the pancreas, neuromedin B and C may be neurotransmitters or neuromodulators and exert a direct local neurocrine action on enzyme secretion by acinar cells and insulin secretion by the islets.
We report systematic 75 As-NQR and 139 La-NMR studies on nickel-pnictide superconductors LaNiAsO1−xFx (x=0, 0.06, 0.10 and 0.12). The spin lattice relaxation rate 1/T1 decreases below Tc with a well-defined coherence peak and follows an exponential decay at low temperatures. This result indicates that the superconducting gap is fully opened, and is strikingly different from that observed in iron-pnictide analogs. In the normal state, 1/T1T is constant in the temperature range Tc ∼4 K≤ T ≤10 K for all compounds and up to T =250 K for x=0 and 0.06, which indicates weak electron correlations and is also different from the iron analog. We argue that the differences between the iron and nickel pnictides arise from the different electronic band structure. Our results highlight the importance of the peculiar Fermi-surface topology in iron-pnictides. 74.25.Nf, 74.90.+n
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.