There are many applications that demand large quantities of natural looking motion. It is difficult to synthesize motion that looks natural, particularly when it is people who must move. In this paper, we present a framework that generates human motions by cutting and pasting motion capture data. Selecting a collection of clips that yields an acceptable motion is a combinatorial problem that we manage as a randomized search of a hierarchy of graphs. This approach can generate motion sequences that satisfy a variety of constraints automatically. The motions are smooth and human-looking. They are generated in real time so that we can author complex motions interactively. The algorithm generates multiple motions that satisfy a given set of constraints, allowing a variety of choices for the animator. It can easily synthesize multiple motions that interact with each other using constraints. This framework allows the extensive re-use of motion capture data for new purposes.
This paper describes a framework that allows a user to synthesize human motion while retaining control of its qualitative properties. The user paints a timeline with annotations --- like walk, run or jump --- from a vocabulary which is freely chosen by the user. The system then assembles frames from a motion database so that the final motion performs the specified actions at specified times. The motion can also be forced to pass through particular configurations at particular times, and to go to a particular position and orientation. Annotations can be painted positively (for example, must run), negatively (for example, may not run backwards) or as a don't-care . The system uses a novel search method, based around dynamic programming at several scales, to obtain a solution efficiently so that authoring is interactive. Our results demonstrate that the method can generate smooth, natural-looking motion.The annotation vocabulary can be chosen to fit the application, and allows specification of composite motions (run and jump simultaneously, for example). The process requires a collection of motion data that has been annotated with the chosen vocabulary. This paper also describes an effective tool, based around repeated use of support vector machines, that allows a user to annotate a large collection of motions quickly and easily so that they may be used with the synthesis algorithm.
Prediction of human physical traits and demographic information from genomic data challenges privacy and data deidentification in personalized medicine. To explore the current capabilities of phenotype-based genomic identification, we applied whole-genome sequencing, detailed phenotyping, and statistical modeling to predict biometric traits in a cohort of 1,061 participants of diverse ancestry. Individually, for a large fraction of the traits, their predictive accuracy beyond ancestry and demographic information is limited. However, we have developed a maximum entropy algorithm that integrates multiple predictions to determine which genomic samples and phenotype measurements originate from the same person. Using this algorithm, we have reidentified an average of >8 of 10 held-out individuals in an ethnically mixed cohort and an average of 5 of either 10 African Americans or 10 Europeans. This work challenges current conceptions of personal privacy and may have far-reaching ethical and legal implications.
We review methods for kinematic tracking of the human body in video. The review is part of a projected book that is intended to cross-fertilize ideas about motion representation between the animation and computer vision communities. The review confines itself to the earlier stages of motion, focusing on tracking and motion synthesis; future material will cover activity representation and motion generation.In general, we take the position that tracking does not necessarily involve (as is usually thought) complex multimodal inference problems. Instead, there are two key problems, both easy to state.The first is lifting, where one must infer the configuration of the body in three dimensions from image data. Ambiguities in lifting can result in multimodal inference problem, and we review what little is known about the extent to which a lift is ambiguous. The second is data association, where one must determine which pixels in an image come from the body. We see a tracking by detection approach as the most productive, and review various human detection methods.Lifting, and a variety of other problems, can be simplified by observing temporal structure in motion, and we review the literature on datadriven human animation to expose what is known about this structure. Accurate generative models of human motion would be extremely useful in both animation and tracking, and we discuss the profound difficulties encountered in building such models. Discriminative methods -which should be able to tell whether an observed motion is human or notdo not work well yet, and we discuss why.There is an extensive discussion of open issues. In particular, we discuss the nature and extent of lifting ambiguities, which appear to be significant at short timescales and insignificant at longer timescales. This discussion suggests that the best tracking strategy is to track a 2D representation, and then lift it. We point out some puzzling phenomena associated with the choice of human motion representation -joint angles vs. joint positions. Finally, we give a quick guide to resources.
This paper describes a framework that allows a user to synthesize human motion while retaining control of its qualitative properties. The user paints a timeline with annotations -like walk, run or jump -from a vocabulary which is freely chosen by the user. The system then assembles frames from a motion database so that the final motion performs the specified actions at specified times. The motion can also be forced to pass through particular configurations at particular times, and to go to a particular position and orientation. Annotations can be painted positively (for example, must run), negatively (for example, may not run backwards) or as a don't-care. The system uses a novel search method, based around dynamic programming at several scales, to obtain a solution efficiently so that authoring is interactive. Our results demonstrate that the method can generate smooth, natural-looking motion.The annotation vocabulary can be chosen to fit the application, and allows specification of composite motions (run and jump simultaneously, for example). The process requires a collection of motion data that has been annotated with the chosen vocabulary. This paper also describes an effective tool, based around repeated use of support vector machines, that allows a user to annotate a large collection of motions quickly and easily so that they may be used with the synthesis algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.