This study proposes a method for the static output feedback (SOF) stabilization of discrete time linear time invariant (LTI) systems by using a low number of sensors. The problem is investigated in two parts. First, the optimal sensor placement is formulated as a quadratic mixed integer problem that minimizes the required input energy to steer the output to a desired value. Then, the SOF stabilization, which is one of the most fundamental problems in the control research, is investigated. The SOF gain is calculated as a projected solution of the Hamilton-Jacobi-Bellman (HJB) equation for discrete time LTI system. The proposed method is compared with several examples from the literature.
Özetçe-Bu bildiride Covid-19 salgınının nüfusta yayılımı SEIQR matematiksel modeli ile formüle edilmiştir. Kesikli zamanlı yayılım modeli ile salgının bulaş hızı ve hasta tespit oranı kestirilmektedir. Kısıtlı optimal kontrol problemi olarak ifade edilen kestirim modeli Pontryagin minimum prensibi ile çözülmüştür. Yayılım ve kestirim modeli gerçek verilerin üzerinde test edilmiş, performans sonuçları sunulmuştur. Önerilen yöntemin başarılı bir şekilde salgın parametrelerinin kestirimini yaptığı gösterilmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.