As widely known laser materials processing has some advantages regarding local heat input and controllability. In many fields applications were developed which are not accessible for conventional thermal processing. In other fields laser-supported manufacturing techniques are a valuable alternative. On the one hand laser techniques enable increased processing speed and less post-processing, leading to an increased productivity. On the other hand low efficiencies in the energy conversion seem to be a major drawback and apparently limit the range of applications. In the frame of conventional processing schemes laser beam welding requires a high utilisation in order to run economically. Main advantages lie in the reduced consumption of material and the reduced efforts in post processing. Because of the locally concentrated heat input process emissions are lower which reduces energy and material consumption in the auxiliary chain
As widely known laser materials processing has some advantages regarding local heat input and controllability. In many fields applications were developed which are not accessible for conventional thermal processing. In other fields laser-supported manufacturing techniques are a valuable alternative. On the one hand laser techniques enable increased processing speed and less post-processing, leading to an increased productivity. On the other hand low efficiencies in the energy conversion seem to be a major drawback and apparently limit the range of applications. In the frame of conventional processing schemes laser beam welding requires a high utilization in order to run economically. Main advantages lie in the reduced consumption of material and the reduced efforts in post processing. Because of the locally concentrated heat input process emissions are lower which reduces energy and material consumption in the auxiliary chain. To make full use of the often-conjured flex ibility a multitude of manufacturing schemes had been developed and adapted. In order to appraise the versatility of laser driven processing techniques a cost and benefit analysis based on a life-cycle approach is conducted including both, economics and ecology. Eco-efficiency is rated by a variation of the BASF method. Taking into account the reduced consumption of consumables, reduced effort for preparation and post-processing, and focusing on specific application ranges a positive environmental impact can be proven
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.