The two main Tethyan sutures of Turkey, the İzmir-Ankara-Erzincan and the Intra-Pontide sutures, are reviewed through several well-studied transects crossing the suture regions. Both sutures have formed during the Early Tertiary continental collisions following northward subduction of Tethyan oceanic lithosphere. The İzmir-Ankara-Erzincan suture is represented along most of its c. 2000 km length by Paleocene and younger thrust, which emplace the upper crustal rocks of the northern continent over that of the southern continent with an intervening tectonic layer of Cretaceous subduction-accretion complexes. These thrusts constitutes a profound stratigraphic, structural, magmatic and metamorphic break, of at least Carboniferous to Palaeocene age and form the main boundary between Laurasia and Gondwana in the Turkish transect. Voluminous subduction-accretion complexes of Triassic and Cretaceous ages occur respectively to the north and south of the suture giving the antithetic subduction polarities during these two periods. This, and evidence for a major accretionary orogeny of Late Triassic age north of the İzmir-Ankara-Erzincan suture suggest that two separate oceanic lithospheres, of Carboniferous to Triassic (Palaeo-Tethys) and of Triassic to Cretaceous ages (Neo-Tethys) respectively have been consumed along the suture. The final continental collision along the İzmir-Ankara-Erzincan suture was slightly diachronous and occurred in the earliest Palaeocene to the west and in the Late Palaeocene to the east. The c. 800 km long Intra-Pontide suture is younger in age and have formed during the Early Eocene and younger continental collisions linked to the opening of the Western Black Sea Basin as an oceanic back-arc basin. At present the North Anatolian Fault, which came into existence in the Late Miocene, follows the course of the older Intra-Pontide suture.
Dedicated to the memory of three pioneers, İhsan Ketin, Sırrı Erinç and Melih Tokay, and a recent student, Aykut Barka, who burnt himself out in pursuit of the mysteries of the North Anatolian Fault. ▪ Abstract The North Anatolian Fault (NAF) is a 1200-km-long dextral strike-slip fault zone that formed by progressive strain localization in a generally westerly widening right-lateral keirogen in northern Turkey mostly along an interface juxtaposing subduction-accretion material to its south and older and stiffer continental basements to its north. The NAF formed approximately 13 to 11 Ma ago in the east and propagated westward. It reached the Sea of Marmara no earlier than 200 ka ago, although shear-related deformation in a broad zone there had already commenced in the late Miocene. The fault zone has a very distinct morphological expression and is seismically active. Since the seventeenth century, it has shown cyclical seismic behavior, with century-long cycles beginning in the east and progressing westward. For earlier times, the record is less clear but does indicate a lively seismicity. The twentieth century record has been successfully interpreted in terms of a Coulomb failure model, whereby every earthquake concentrates the shear stress at the western tips of the broken segments leading to westward migration of large earthquakes. The August 17 and November 12, 1999, events have loaded the Marmara segment of the fault, mapped since the 1999 earthquakes, and a major, M ≤ 7.6 event is expected in the next half century with an approximately 50% probability on this segment. Currently, the strain in the Sea of Marmara region is highly asymmetric, with greater strain to the south of the Northern Strand. This is conditioned by the geology, and it is believed that this is generally the case for the entire North Anatolian Fault Zone. What is now needed is a more detailed geological mapping base with detailed paleontology and magnetic stratigraphy in the shear-related basins and more paleomagnetic observations to establish shear-related rotations.
A 50 kyr‐long exceptionally well‐dated and highly resolved stalagmite oxygen (δ18O) and carbon (δ13C) isotope record from Sofular Cave in northwestern Turkey helps to further improve the dating of Greenland Interstadials (GI) 1, and 3–12. Timing of most GI in the Sofular record is consistent within ±10 to 300 years with the “iconic” Hulu Cave record. Larger divergences (>500 years) between Sofular and Hulu are only observed for GI 4 and 7. The Sofular record differs from the most recent NGRIP chronology by up to several centuries, whereas age offsets do not increase systematically with depth. The Sofular record also reveals a rapid and sensitive climate and ecosystem response in the eastern Mediterranean to GI, whereas a phase lag of ∼100 years between climate and full ecosystem response is evident. Finally, results of spectral analyses of the Sofular isotope records do not support a 1,470‐year pacing of GI.
The Pontides in northern Turkey constituted part of the southern active margin of Eurasia during the Mesozoic. In the Early Cretaceous, a large submarine turbidite fan covered most of the Central Pontides. New U‐Pb detrital zircon data imply that the major source of the turbidites was the East European Craton‐Scythian Platform in the north. This implies that there was no thoroughgoing Black Sea basin between the Pontides and the East European Craton during the Early Cretaceous. The Lower Cretaceous turbidites are bounded in the south by a large metamorphic area, the Central Pontide Supercomplex (CPS). New geological mapping, petrology, and U‐Pb zircon and Ar‐Ar muscovite ages indicate that the northern part of the CPS consists of Lower Cretaceous distal turbidites deformed and metamorphosed in a subduction zone in the Albian. The rest of the CPS is made of Middle Jurassic, Lower Cretaceous, and middle Cretaceous (Albian) metamorphic belts, each constituting distinct subduction‐accretion units. They represent episodes of collision of oceanic volcanic arcs and oceanic plateaus with the Eurasian margin and are marked in the stratigraphy of the hinterland by periods of uplift and erosion. The accretionary complexes are overlain by Upper Cretaceous (Turonian‐Santonian) volcano‐sedimentary sequences deposited in a fore‐arc setting. The detrital zircon data, middle Cretaceous (Albian) metamorphism, and widespread Albian uplift of the Black Sea region suggest that Early Cretaceous (Barremian‐Aptian) nonvolcanic rifting and Late Cretaceous (Turonian‐Santonian) opening of the Black Sea by the splitting of the arc are unrelated events.
The Strandja Massif is a mid-Mesozoic orogenic belt in the Balkans build on a late-Variscan basement of gneisses, migmatites and granites. New single-zircon evaporation ages from the gneisses and granites indicate that the high-grade metamorphism and plutonism is Early Permian in age (~271 Ma). The late-Variscan basement was unconformably overlain by a continental to shallow marine sequence of Early Triassic±Mid-Jurassic age. During the Late Jurassic±Early Cretaceous (Oxfordian±Barremian) the lower Mesozoic cover and the basement were penetratively deformed and regionally metamorphosed in greenschist facies possibly due to a continental collision. An Rb±Sr biotite whole-rock age from a metagranite dates the regional metamorphism as Late Jurassic (155 Ma). Deformation involved north-vergent thrust imbrication of the basement and the emplacement of allochthonous deep marine Triassic series over the Jurassic metasediments. The metamorphic rocks of the Strandja Massif are unconformably overlain by the Cenomanian shallow marine sandstones. During the Senonian, the northern half of the Strandja Massif formed a basement to an intra-arc basin and to a magmatic arc generated above the northward-subducting Tethyan oceanic lithosphere.The Srednogorie arc closed during the early Tertiary through renewed northward thrusting of the Strandja Massif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.