Objectives. This study aimed to validate the accuracy of working length (WL) measurements obtained with the newly introduced Propex IQ apex locator and to compare it with the latest generations of other electronic apex locators, CBCT, and conventional periapical radiographs by using the actual WL measurements obtained by using an endodontics microscope as a reference. Materials and Methods. Thirty-five extracted single-rooted human mandibular first premolars with curvatures from 10° to 20° were selected according to the inclusion and exclusion criteria and cut at the cementoenamel junction to achieve a standard reference point for WL determination. The actual WL was obtained by inserting a size-15 k-file in the root canal until the tip of the file was visible under an endodontic microscope. The definitive WL was measured using Propex IQ (Dentsply Sirona), Raypex 6 (VDW Dental), Root ZX (Morita), and Apex ID (Kerr Dental). In addition, radiographic WL was obtained using periapical radiographs and CBCT. One-way ANOVA was used for comparisons of the WL values, with a p value < 0.05. The percentage of success of each method for determination of the definitive WL was assessed using cross-tabulation and chi-square tests. Results. CBCT radiographs and Propex IQ apex locator yielded the most accurate WL measurements in comparison with the actual WL measurements ( p < 0.05 ). Raypex 6, Root ZX, and Apex ID yielded more accurate WL measurements than conventional periapical radiographs ( p < 0.05 ). Periapical radiographs yielded the least accurate WL measurements in comparison with the actual WL values ( p < 0.05 ). Conclusions. Within the limitations of this study, the Propex IQ apex locator showed higher accuracy than Raypex 6, Root ZX, and Apex ID for WL determination in the root canal. Nevertheless, CBCT radiographs yielded the maximum accuracy for WL measurements.
The effectiveness of remineralizing agents in reducing dentine permeability by tubule occlusion using fluid filtration device functioning at 100 cmH2O (1.4 psi) pressure and SEM/EDX analysis were evaluated and compared. Seventy (n = 70) dentine discs of 1±0.2 mm width were prepared from sound permanent human molars. Fifty (n = 50) dentine discs were randomly divided into 5 groups (n = 10): Group 1: GC Tooth Mousse Plus (Recaldent GC Corporation Tokyo, Japan), Group 2: Clinpro™ White Varnish (3M ESPE, USA), Group 3: Duraphat® Varnish (Pharbil Waltrop GmbH, Germany), Group 4: Colgate Sensitive Pro-Relief™ dentifrice (Colgate Palmolive, Thailand), and Group 5: Biodentine™ (Septodont/UK). Dentine permeability was measured after treatment application at 10 minutes, artificial saliva immersion at 7 days, and citric acid challenge for 3 minutes. Data were analyzed by two-way repeated measures ANOVA. Dentine specimens (n = 20) were used for SEM/EDX analyses to obtain qualitative results on dentine morphology and surface deposits. Each treatment agent significantly reduced dentine permeability immediately after treatment application and created precipitates on treated dentine surfaces. All agents increased permeability values after 7 days of artificial saliva immersion except Clinpro White Varnish and Biodentine. Clinpro White Varnish exhibited significant resistance to acid challenge compared to others. Colgate Sensitive Pro-Relief dentifrice has a dual mechanism of action in reducing the dentine sensitivity.
Purpose: This study aims to retard the setting reaction of CSC by mixing it with 2% chlorhexidine gel (CHX) which will be used as an intracanal medicament, and to evaluate the removal of the experimental medicaments from the root canal. Materials and Methods: White Portland cement, white ProRoot MTA and Biodentine were mixed with 2% CHX. The setting time, flowability and film thickness of the CSC/CHX mixture (experimental medicaments) were assessed and measured following the standards of ISO specification. Calcium ion release was measured using ICP-OES, while pH was tested using a pH meter. Moreover, twenty single-rooted teeth were filled with the experimental medicaments for seven days, then the medicaments were removed and the samples analyzed using SEM. Calcium hydroxide paste was used as a control. Results: The setting time of the experimental medicaments was inhibited until 84 days. The calcium ion release of the experimental medicaments was significantly higher compared to the control over the period of 14 days (P<0.001). The mean pH value was above 11.45 for all tested materials over a period of 14 days, with no significant difference between them (P<0.05). There was no significant difference in film thickness of the experimental medicaments compared to the control (P> 0.05). However, the flowability of the experimental medicaments was significantly higher than the control (P<0.05). SEM showed no significant differences in the removal of the intracanal medicaments between all the tested groups. Conclusion: The addition of 2% CHX to CSCs retarded or inhibited its setting reaction over a period of 84 days. The calcium ion release and flowability of these experimental medicaments was found to be better than calcium hydroxide. Removal of the intracanal medicaments from the root canal was successfully achieved in all groups. Therefore, these experimental medicaments have the potential to be used as an enhanced root canal medicament.
Objectives. To evaluate the in vitro effectiveness of desensitizing agents in reducing dentine permeability. Methods. The efficacy of desensitizing agents in reducing dentine permeability by occluding dentine tubules was evaluated using a fluid filtration device that conducts at 100 cmH2O (1.4 psi) pressure, and SEM/EDX analyses were evaluated and compared. Forty-two dentine discs ( n = 42 ) of 1 ± 0.2 mm width were obtained from caries-free permanent human molars. Thirty dentine discs ( n = 30 ) were randomly divided into 3 groups ( n = 10 ): Group 1: 2.7% wt. monopotassium-monohydrogen oxalate (Mp-Mh oxalate), Group 2: RMGI XT VAR, and Group 3: LIQ SiO2. Dentine permeability was measured following treatment application after 10 minutes, storage in artificial saliva after 10 minutes and 7 days, and citric acid challenge for 3 minutes. Data were analysed with a repeated measures ANOVA test. Dentine discs ( n = 12 ) were used for SEM/EDX analyses to acquire data on morphological changes on dentine surface and its mineral content after different stages of treatment. Results. Desensitizing agents’ application on the demineralized dentine discs exhibited significant reduction of permeability compared to its maximum acid permeability values. Mp-Mh oxalate showed a significant reduction in dentine permeability ( p < 0.05 ) when compared to RMGI XT VAR and LIQ SiO2. On SEM/EDX analysis, all the agents formed mineral precipitates that occluded the dentine tubules. Conclusions. 2.7% wt. monopotassium-monohydrogen oxalate was significantly effective in reducing dentine permeability compared to RMGI XT VAR and LIQ SiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.