The coag-flocculation performance of Mucuna Seed Coagulant as affected by pH variation in coal washery effluent has been investigated at room temperature using various dosages of unblended Mucuna Seed Coagulant. In addition, coag-flocculation parameters such as Coagflocculation reaction order α, α th order coag-flocculation constant K, Collision factor for Brownian Transport β Br, Smoluchowski constant K R, , Collision Efficiency ε p, and Coagulation Period τ 1/2 were determined. Turbidity measurement was employed using the nephelometric (turbidimetric) standard method while Mucuna Seed Coagulant preparation was adopted from the works of Adebowale and Adebowale (2007). The maximum Mucuna Seed Coagulant parameter performance is recorded at α of 2, K of 8.3334 x 10-3 m 3 /kg.s, dosages of (0.15 kg/m 3 ; 0.2 kg/m 3 ; 0.25 kg/m 3); pH of 6 and τ 1/2 of 1.7339 sec while the minimum parametric performance is recorded at α of 1; K of 6.3001 x 10-4 s-1 ; dosage of 0.2kg/m 3 ; pH of 8 and τ 1/2 of 1100.2161seconds. The minimum value of coag-flocculation efficiency E (%) recorded is greater than 88.00 %. Conclusively; Mucuna Seed Coagulant is an effective coagulant obeying the theory of fast coagulation at the conditions of the experiment.
Chrysophyllum albidium seed shell, an abundant, biodegradable and inexpensive natural resource was used as a precursor to bioadsorbent production for the removal of suspended and dissolved particles (SDP) from initially coagulated Brewery Effluent (BRE). Influence of key parameters such as contact time, bioadsorbent dose, pH and temperature were investigated using batch mode. The thermal behavior studies were evaluated using Thermogravimetric and Differential scanning calorimetric analyses. The morphological observations and functional groups of the bioadsorbents were determined using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The adsorption equilibrium, thermodynamics and kinetic of SDP adsorption on H3PO4-treated shell and NH4Cl-treated shell were examined at specified temperatures. Equilibrium data sufficiently fitted the Langmuir isotherm model (R2 > 0.99; SSE < 0.09). The pseudo-second order kinetic model provided the best correlation (R2 > 0.99; SSE < 0.14) with the experimental data. The values of ΔG° and ΔH° indicated the spontaneous and endothermic nature of the process. This study demonstrated that C. albidium seed shell could be utilized as low cost, renewable, ecofriendly bioadsorbent for the uptake of SDP from BRE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.