The overall efficiency with which Milky Way Giant Molecular Clouds (GMCs) is forming stars was determined by deriving an equation using density of cloud (i.e. stellar density/ total cloud density), which is the core parameter that determines star formation other than the mass of cloud, and comparing with mass (i.e. stellar mass/ total gas mass) as was propounded by previous researchers, to ascertain the reasons the observed star formation efficiency of Milky Way Giant Molecular Clouds () is low. This will aid understanding the physical factors behind the formation of stars from interstellar gas and develop a predictive theory of star formation and evolution of galaxies. A total of 191 star formation complexes-giant molecular cloud (SFC-GMC) complexes was used in estimating the following cloud parameters: density as 93.8218 solar mass/parsec squared, average stellar density as 2.67872 solar mass/parsec squared, average luminosity as 9.87E24 solar luminosity, average effective temperature as 498,647 solar temperature, average stellar radius as 51.4522 parsec and average cloud radius as 325507 parsec as well as the total mass in stars M harbored by the individual clouds (20,831 solar mass), which was inferred from Wilkinson Microwave Anisotropy probe (WMAP) free-free. Finally, the overall efficiency with which Milky Way Giant Molecular Clouds is forming star gave 0.0289573 which is less than the previous estimate as 0.030849, showing that not all the masses of the cloud were present at the end of the star formation, and this reduction in mass are caused by magnetic field, supersonic turbulence, self-regulation and unbound states of its internal structure, which are the reasons the observed star formation efficiencies are low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.