Insects vastly outnumber us in terms of species and total biomass, and are among the most efficient and voracious consumers of plants on the planet. As a result, to preserve crops, one of the primary tasks in agriculture has always been the need to control and reduce the number of insect pests. The current use of chemical insecticides leads to the accumulation of xenobiotics in ecosystems and a decreased number of species in those ecosystems, including insects. Sustainable development of human society is impossible without useful insects, so the control of insect pests must be effective and selective at the same time. In this article, we show for the first time a natural way to regulate the number of insect pests based on the use of extracellular double-stranded DNA secreted by the plant Pittosporum tobira. Using a principle similar to one found in nature, we show that the topical application of artificially synthesized short antisense oligonucleotide insecticides (olinscides, DNA insecticides) is an effective and selective way to control the insect Coccus hesperidum. Using contact oligonucleotide insecticide Coccus-11 at a concentration of 100 ng/μL on C. hesperidum larvae resulted in a mortality of 95.59 ± 1.63% within 12 days. Green oligonucleotide insecticides, created by nature and later discovered by humans, demonstrate a new method to control insect pests that is beneficial and safe for macromolecular insect pest management.
The coronavirus pandemic has starkly demonstrated the need to create highly effective vaccines against various viral diseases. The emerging new platforms for vaccine creation (adenovirus vectors and mRNA vaccines) have shown their worth in the fight against the prevention of coronavirus infection. However, adenovirus vectors and mRNA vaccines have a serious disadvantage: as a rule, only the S protein of the coronavirus is presented as an antigen. This tactic for preventing infection allows the ever-mutating virus to escape quickly from the immunity protection provided by such vaccines. Today, viral genomic databases are well-developed, which makes it possible to create new vaccines on a fundamentally new post-genomic platform. In addition, the technology for the synthesis of nucleic acids is currently experiencing an upsurge in demand in various fields of molecular biology. The accumulated experience suggests that the unique genomic sequences of viruses can act as antigens that trigger powerful humoral and cellular immunity. To achieve this effect, the following conditions must be created: the structure of the nucleic acid must be single-stranded, have a permanent 3D nanostructure, and have a unique sequence absent in the vaccinated organism. Oligonucleotide vaccines are able to resist the rapidly changing genomic sequences of RNA viruses by using conserved regions of their genomes to generate a long-term immune response, acting according to the adage that a diamond cuts a diamond. In addition, oligonucleotide vaccines will not contribute to antibody-dependent enhanced infection, since the nucleic acid of the coronavirus is inside the viral particle. It is obvious that new epidemics and pandemics caused by RNA viruses will continue to arise periodically in the human population. The creation of new, safe, and effective platforms for the production of vaccines that can flexibly change and adapt to new subtypes of viruses is very urgent and at this moment should be considered as a strategically necessary task.
The vaccination rate worldwide has reached enormous proportions, and it is likely that at least 75% of the world's population will be vaccinated. The controversy is that, while people aged 65 and older suffer a significantly higher mortality rate from COVID-19, plans are being made to vaccinate young people under the age of 20. Equally thorny is the question of vaccinating people who already have antibodies to SARS-CoV-2, as well as B and T memory cells, because they contracted and survived the virus. The possible consequences of large-scale vaccination are difficult to predict, when some people do not have access to the vaccine at all and others have already received 3 doses of the vaccine. SARS-CoV-2 will circulate through the human population forever and continue to mutate, as viruses do. Therefore, in the coming years, the need to develop and use effective vaccines and medicines for the prevention and treatment of COVID-19 will remain urgent in view of the high mortality rate from this disease. To date, three vaccine platforms have been most used: adenoviral vector, inactivated, and mRNA. There is some concern about the side effects that occur after vaccination. Whether modern anti-coronavirus vaccines can raise the safety threshold, only time will answer. It is obvious that the pandemic will end, but the virus will remain in the human population, leaving behind invaluable experience and tens of millions of victims. This article is based on search retrieves in research articles devoted to COVID-19 mainly published in 2020–2021 and examines the possible consequences of the worldwide vaccination against SARS-CoV-2 and suggests that, while anti-coronavirus vaccines will not magically transport humanity to a non-pandemic world, they may greatly reduce the number of victims of the pandemic and help us learn how to live with COVID-19.
The SARS-CoV-2 pandemic has demonstrated the need to create highly effective antivirals and vaccines against various RNA viruses, including SARS coronaviruses. This paper provides a short review of innovative strategies in the development of antivirals and vaccines against SARS coronaviruses, with a focus on antisense antivirals, oligonucleotide adjuvants in vaccines, and oligonucleotide vaccines. Well-developed viral genomic databases create new opportunities for the development of innovative vaccines and antivirals using a post-genomic platform. The most effective vaccines against SARS coronaviruses are those able to form highly effective memory cells for both humoral and cellular immunity. The most effective antivirals need to efficiently stop viral replication without side effects. Oligonucleotide antivirals and vaccines can resist the rapidly changing genomic sequences of SARS coronaviruses using conserved regions of their genomes to generate a long-term immune response. Oligonucleotides have been used as excellent adjuvants for decades, and increasing data show that oligonucleotides could serve as antisense antivirals and antigens in vaccine formulations, becoming a prospective tool for immune system tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.