The removal of dying neurons by microglia has a key role during both development and in several diseases. To date, little is known about the cellular and molecular processes underlying neuronal engulfment in the brain. Here we took a live imaging approach to quantify neuronal cell death progression in embryonic zebrafish brains and studied the response of microglia. We show that microglia engulf dying neurons by extending cellular branches that form phagosomes at their tips. At the molecular level we found that microglia lacking the phosphatidylserine receptors BAI1 and TIM-4, are able to recognize the apoptotic targets but display distinct clearance defects. Indeed, BAI1 controls the formation of phagosomes around dying neurons and cargo transport, whereas TIM-4 is required for phagosome stabilization. Using this single-cell resolution approach we established that it is the combined activity of BAI1 and TIM-4 that allows microglia to remove dying neurons.
We describe here a unique ethanol-inducible process for expression of recombinant proteins in transgenic plants. The process is based on inducible release of viral RNA replicons from stably integrated DNA proreplicons. A simple treatment with ethanol releases the replicon leading to RNA amplification and high-level protein production. To achieve tight control of replicon activation and spread in the uninduced state, the viral vector has been deconstructed, and its two components, the replicon and the cell-to-cell movement protein, have each been placed separately under the control of an inducible promoter. Transgenic Nicotiana benthamiana plants incorporating this double-inducible system demonstrate negligible background expression, high (over 0.5 × 10 4 -fold) induction multiples, and high absolute levels of protein expression upon induction (up to 4.3 mg∕g fresh biomass). The process can be easily scaled up, supports expression of practically important recombinant proteins, and thus can be directly used for industrial manufacturing.plant-made pharmaceuticals | TMV
CoA Synthase (CoASy, 4'-phosphopantetheine adenylyltransferase/dephospho-CoA kinase) mediates two final stages of de novo coenzyme A (CoA) biosynthesis in higher eukaryotes. Unfortunately very little is known about regulation of this important metabolic pathway. In this study, we demonstrate that CoASy interacts in vitro with Src homology-2 (SH2) domains of a number of signaling proteins, including Src homology-2 domains containing protein tyrosine phosphatase (Shp2PTP). Complexes between CoASy and Shp2PTP exist in vivo in mammalian cells and this interaction is regulated in a growth-factor-dependent manner. We have also demonstrated that endogenous CoASy is phosphorylated on tyrosine residues in vivo, and that cytoplasmic protein tyrosine kinases can mediate this phosphorylation in vitro and in vivo. Importantly, Shp2PTP-mediated CoASy in vitro dephosphorylation leads to an increase in CoASy enzymatic phosphopantetheine adenylyltransferase (PPAT) activity. We therefore argue that CoASy is a novel potential substrate of Shp2PTP and phosphorylation of CoASy at tyrosine residue(s) could represent unrecognized before mechanism of modulation intracellular CoA level in response to hormonal and (or) other extracellular stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.