The development of materials offering electromagnetic interference (EMI) shielding is of significant consideration, since this can help in expanding the lifetime of devices, electromagnetic compatibility, as well as the protection of biological systems. Conductive paints used widely today in electromagnetic interference (EMI) shielding applications are often based on organic solvents that can create safety issues due to the subsequent environment problems. This paper concerned the development of eco-friendly conductive water-based paints for use in EMI-shielding applications. Graphene nanoplatelets, polyaniline emeraldine (PANI) doped with poly(styrene sulfonic acid) (PSS) or HCl or HBr and poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid) (PEDOT:PSS) in various ratios were employed in a water base for developing the paints. The target was to develop homogeneous water-based paint-like fluid mixtures easily applied onto surfaces using a paint brush, leading in homogeneous, uniform, opaque layers, draying fast in air at room temperature, and having quite good electrical conductivity that can offer efficient EMI-shielding performance. The results of this parametric trial indicated the optimum compositions leading in paints with optimized properties that can result in uniform, homogeneous, and conductive layers up to a thickness of over 500 μm without deformation and cracking, offering attenuation of up to 60 dBs of incoming GHz electromagnetic radiation. In addition, the structural and morphological characteristics of these paints were studied in detail.
The present manuscript reports on optimized formulations of alcohol-based conductive paints for electromagnetic interference shielding (EMI), which can ensure compatibility and reduce the visibility of electronic equipment, as a continuation of our previous work in this field, which examined water-based formulations for other applications. Graphite, carbon black, graphene, Fe3O4, Fe ore, and PEDOT:PSS in various ratios and combinations were employed in an alcohol base for developing homogeneous paint-like fluid mixtures that could be easily applied to surfaces with a paintbrush, leading to homogeneous, uniform, opaque layers, drying fast in the air at room temperature; these layers had a reasonably good electrical conductivity and, subsequently, an efficient EMI-shielding performance. Uniform, homogeneous and conductive layers with a thickness of over 1 mm without exfoliations and cracking were prepared with the developed paints, offering an attenuation of up to 50 dB of incoming GHz electromagnetic radiation. The structural and morphological characteristics of the paints, which were studied in detail, indicated that these are not simple physical mixtures of the ingredients but new composite materials. Finally, mechano-climatic and environmental tests on the coatings demonstrated their quality, since temperature, humidity and vibration stressors did not affect them; this result proves that these coatings are suitable for commercial products.
The present work regards the development of paint-like composites based on mixtures of carbon materials with magnetite in polyvinyl butyral matrix, and the investigation of the dependence on the electrical characteristics and the frequency of their electromagnetic shielding properties. It was found that high electromagnetic shielding effectiveness requires not only the presence of a high content of carbon components in the composite, but also the absence of an agglomeration of filler particles. Using these paint-like materials, a shielding effectiveness of up to −35 dB of UHF radiation can be obtained. A combination of fillers based on carbon-graphite materials of different morphology and magnetite was found to enhance shielding efficiency.
A model is proposed for the description of the discharging of porous graphite electrodes. The model takes into account the nonequivalence of the different layers of the internal porous surface, as well as change in the potential and current density in these layers depending on the amount of passed charge. The model uses a special Balgorithmic approach^for calculating current distribution in such a non-stationary system, based on consistent computer formulation and solution of Kirchhoff's algebraic equations for the equivalent electrical circuit that simulates a porous electrode with the given thickness on different time intervals. The analysis of the model enables a better understanding of the mechanism of current generation in porous graphite electrodes and offers and explanation of the effect of electrochemical process penetration into the thick electrodes during the discharge process. It is shown, particularly, that classical almost exponential current distributions in the initial quasi-stationary period of time changes considerably during the further discharge process. After some period of discharge, the current peaks originate in the electrode. These discharge currents travel into the depth of the electrode, involving again and again new layers the porous electrode. The effect of some design and technological parameters (like the electrode thickness, current density, resistor of separator, polymer binders, etc.) has been analyzed. This gives a possibility to estimate the influence of such parameters on the discharge curves and operating characteristics of lithium-ion batteries and hybrid electrochemical capacitors with negative graphite electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.