Abstract:In this study, we describe synthesis, characterization, and zipper assembly of yellow p-oligophenyl naphthalenediimide (POP-NDI) donor-acceptor hybrids. Moreover, we disclose, for the first time, results from the functional comparison of zipper and layer-by-layer (LBL) assembly as well as quartz crystal microbalance (QCM), atomic force microscopy (AFM), and molecular modeling data on zipper assembly. Compared to the previously reported blue and red NDIs, yellow NDIs are more π-acidic, easier to reduce, and harder to oxidize. The optoelectronic matching achieved in yellow POP-NDIs is reflected in quantitative and long-lived photoinduced charge separation, comparable to their red and much better than their blue counterparts. The direct comparison of zipper and LBL assemblies reveals that yellow zippers generate more photocurrent than blue zippers as well as LBL photosystems. Continuing linear growth found in QCM measurements demonstrates that photocurrent saturation at the critical assembly thickness occurs because more charges start to recombine before reaching the electrodes and not because of discontinued assembly. The found characteristics, such as significant critical thickness, strong photocurrents, large fill factors, and, according to AFM images, smooth surfaces, are important for optoelectronic performance and support the existence of highly ordered architectures.
Facile access to complex systems is crucial to generate the functional materials of the future. Herein, we report self-organizing surface-initiated polymerization (SOSIP) as a user-friendly method to create ordered as well as oriented functional systems on transparent oxide surfaces. In SOSIP, self-organization of monomers and ring-opening disulfide exchange polymerization are combined to ensure the controlled growth of the polymer from the surface. This approach provides rapid access to thick films with smooth, reactivatable surfaces and long-range order with few defects and high precision, including panchromatic photosystems with oriented four-component redox gradients. The activity of SOSIP architectures is clearly better than that of disordered controls.
Optical spectroscopy and nanosecond flash photolysis (Nd:YAG laser, 355 nm, pulse duration 5 ns, mean energy 5 mJ/pulse) were used to study the photochemistry of Fe(III)(C2O4)3(3-) complex in aqueous solutions. The main photochemical process was found to be intramolecular electron transfer from the ligand to Fe(III) ion with formation of a primary radical complex [(C2O4)2Fe(II)(C2O4(*))](3-). The yield of radical species (i.e., CO2(*-) and C2O4(*-)) was found to be less than 6% of Fe(III)(C2O4)3(3-) disappeared after flash. [(C2O4)2Fe(II)(C2O4(*))](3-) dissociates reversibly into oxalate ion and a secondary radical complex, [(C2O4)Fe(II)(C2O4(*))](-). The latter reacts with the initial complex and dissociates to Fe(II)(C2O4) and oxalate radical. In this framework, the absorption spectra and rate constants of the reactions of all intermediates were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.