The accumulation of student databases can occur if students are unable to complete their studies, namely graduating at a predetermined time. Data mining techniques are often used to process student data so that they can produce predictions of student graduation in order to graduate at a predetermined time. One of the data mining techniques that is often used is the Support Vector Machine (SVM) algorithm. This study aims to analyze the performance of the SVM algorithm to produce a predictive model of student graduation in order to graduate at a predetermined time in the Public Health Study Program, Faculty of Public Health, Deli Husada Health Institute. The method used in this study is a linear SVM algorithm starting from data retrieval by selecting the attributes that will be used for the next stage, data processing consists of cleaning data whose contents do not exist and data transformation which is the determination of the category of each data, modeling is done with the SVM algorithm. from training data and testing and evaluation data to validate and measure the accuracy of the model. The test results with the amount of training data as much as 70% and testing data as much as 30% shows that the linear SVM algorithm provides an accuracy value of 90%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.