Accurate electricity price forecasting has become a substantial requirement since the liberalization of the electricity markets. Due to the challenging nature of electricity prices, which includes high volatility, sharp price spikes and seasonality, various types of electricity price forecasting models still compete and cannot outperform each other consistently. Neural Networks have been successfully used in machine learning problems and Recurrent Neural Networks (RNNs) have been proposed to address time-dependent learning problems. In particular, Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU) are tailor-made for time series price estimation. In this paper, we propose to use multi-layer Gated Recurrent Units as a new technique for electricity price forecasting. We have trained a variety of algorithms with three-year rolling window and compared the results with the RNNs. In our experiments, three-layered GRUs outperformed all other neural network structures and state-of-the-art statistical techniques in a statistically significant manner in the Turkish day-ahead market.
Accurate electricity price forecasting has become a substantial requirement since the liberalization of the electricity markets. Due to the challenging nature of the electricity prices, which includes high volatility, sharp price spikes and seasonality, various types of electricity price forecasting models still compete and can not outperform each other consistently. Neural Networks have been successfully used in machine learning problems and Recurrent Neural Networks (RNNs) have been proposed to address time-dependent learning problems. In particular, Long Short Term Memory and Gated Recurrent Units (GRU) are tailor-made for time series price estimation. In this paper, we propose to use Gated Recurrent Units as a new technique for electricity price forecasting. We have trained a variety of algorithms with rolling 3-year window and compared the results with the RNNs. In our experiments, 3-layered GRUs outperformed all other neural network structures and state of the art statistical techniques in a statistically significant manner in the Turkish day-ahead market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.