A method of imaging sea surfaces based on marine seismic measurements has recently been developed. The imaging technique is based on extrapolating decomposed wavefields obtained from dual-sensor streamers to the sea surface where an adequate imaging condition is applied. Earlier feasibility tests of the method involved only controlled data associated with frozen sea surfaces. Here, the issue of time-varying effects will be in focus. We introduced a modeling approach based on the Kirchhoff-Helmholtz integral and computed the scattered wavefield from time-varying rough sea surfaces (e.g., Pierson-Moskowitz sea surfaces). We generated data for a realistic wind speed and verify the robustness of the proposed sea surface imaging technique by taking into account possible effects of moving receivers as well as streamers with variable shape. We investigate the feasibility of estimating the surface wave velocity from the spectra of the imaged sea surfaces and finally present a successful application of the sea surface imaging technique to data from the North Sea.
Sea surface reflection coefficient estimates are obtained from imaged sea surfaces by applying an imaging technique that is based on decomposed wavefields acquired by dual-sensor towed streamers. The accuracy of this technique in the case of imaging has been demonstrated employing controlled data scattered by realistic timevarying rough sea surfaces (e.g., Pierson-Moskowiz sea surface). The scattered data was computed based on the Kirchhoff-Helmholtz integral. Here, the feasibility of recovering sea surface reflection coefficient estimates from deterministic and realistic sea surfaces is demonstrated. First, using existing studies, the sea surface reflectivity is benchmarked. Subsequently, sea surface imaging was employed to demonstrate the feasibility of recovering the sea surface reflectivity from marine seismic data.
Sea-surface profile and reflection coefficient estimates are vital input parameters to various seismic data processing applications. The common assumption of a flat sea surface when processing seismic data can lead to misinterpretations and mislocations of events. A new method of imaging the sea surface from decomposed wavefields has been developed. Wavefield separation is applied to the data acquired by a towed dual-sensor streamer containing collocated pressure and vertical particle velocity sensors to obtain upgoing and downgoing wavefields of the related sensors. Time-gated upgoing and downgoing wavefields corresponding to a given sensor are then extrapolated to the sea surface where an imaging condition is applied so that the time-invariant shape of the sea surface can be recovered. By sliding the data time-window, the temporal changes of the sea surface can be correspondingly estimated. Ray tracing and finite-difference methods were used to generate different controlled data sets used in this feasibility study to demonstrate the imaging principle and to test the image accuracy. The method was also tested on a first field data example of a marginal weather line from the North Sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.