Abstract-In this paper we present a method for the automatic generation of content for the physics-based puzzle game Cut The Rope. An evolutionary game generator is implemented which evolves the design of levels based on a context-free grammar. We present various measures for analyzing the expressivity of the generator and visualizing the space of content covered. We further perform an experiment on evolving playable content of the game and present and analyze the results obtained.
Connecting the physical world to the Internet of Things (IoT) allows for the development of a wide variety of applications. Things can be searched, managed, analyzed, and even included in collaborative games. Industries, health care, and cities are exploiting IoT data-driven frameworks to make these organizations more efficient, thus, improving the lives of citizens. For making IoT a reality, data produced by sensors, smart phones, watches, and other wearables need to be integrated; moreover, the meaning of IoT data should be explicitly represented. However, the Big Data nature of IoT data imposes challenges that need to be addressed in order to provide scalable and efficient IoT data-driven infrastructures. We tackle these issues and focus on the problems of describing the meaning of IoT streaming data using ontologies and integrating this data in a knowledge graph. We devise DESERT, a SPARQL query engine able to on-Demand factorizE and Semantically Enrich stReam daTa in a knowledge graph. Resulting knowledge graphs model the semantics or meaning of merged data in terms of entities that satisfy the SPARQL queries and relationships among those entities; thus, only data required for query answering is included in the knowledge graph. We empirically evaluate the results of DESERT on SRBench, a benchmark of Streaming RDF data. The experimental results suggest that DESERT allows for speeding up query execution while the size of the knowledge graphs remains relatively low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.