This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cell image analysis software CellProfiler, the first free, open-source system for flexible and high-throughput cell image analysis is described.
In this paper, novel methods for detecting steady-state visual evoked potentials using multiple electroencephalogram (EEG) signals are presented. The methods are tailored for brain-computer interfacing, where fast and accurate detection is of vital importance for achieving high information transfer rates. High detection accuracy using short time segments is obtained by finding combinations of electrode signals that cancel strong interference signals in the EEG data. Data from a test group consisting of 10 subjects are used to evaluate the new methods and to compare them to standard techniques. Using 1-s signal segments, six different visual stimulation frequencies could be discriminated with an average classification accuracy of 84%. An additional advantage of the presented methodology is that it is fully online, i.e., no calibration data for noise estimation, feature extraction, or electrode selection is needed.
Efficiently obtaining a reliable coronary artery centerline from computed tomography angiography data is relevant in clinical practice. Whereas numerous methods have been presented for this purpose, up to now no standardized evaluation methodology has been published to reliably evaluate and compare the performance of the existing or newly developed coronary artery centerline extraction algorithms. This paper describes a standardized evaluation methodology and reference database for the quantitative evaluation of coronary artery centerline extraction algorithms. The contribution of this work is fourfold: 1) a method is described to create a consensus centerline with multiple observers, 2) well-defined measures are presented for the evaluation of coronary artery centerline extraction algorithms, 3) a database containing thirty-two cardiac CTA datasets with corresponding reference standard is described and made available, and 4) thirteen coronary artery centerline extraction algorithms, implemented by different research groups, are quantitatively evaluated and compared. The presented evaluation framework is made available to the medical imaging community for benchmarking existing or newly developed coronary centerline extraction algorithms.
White matter fiber bundles in the human brain can be located by tracing the local water diffusion in diffusion weighted magnetic resonance imaging (MRI) images. In this paper, a novel Bayesian modeling approach for white matter tractography is presented. The uncertainty associated with estimated white matter fiber paths is investigated, and a method for calculating the probability of a connection between two areas in the brain is introduced. The main merits of the presented methodology are its simple implementation and its ability to handle noise in a theoretically justified way. Theory for estimating global connectivity is also presented, as well as a theorem that facilitates the estimation of the parameters in a constrained tensor model of the local water diffusion profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.