Developmental dyslexia, an unexplained difficulty in learning to read, has been associated with alterations in white matter organization as measured by diffusion-weighted imaging. It is unknown, however, whether these differences in structural connectivity are related to the cause of dyslexia or if they are consequences of reading difficulty (e.g., less reading experience or compensatory brain organization). Here, in 40 kindergartners who had received little or no reading instruction, we examined the relation between behavioral predictors of dyslexia and white matter organization in left arcuate fasciculus, inferior longitudinal fasciculus, and the parietal portion of the superior longitudinal fasciculus using probabilistic tractography. Higher composite phonological awareness scores were significantly and positively correlated with the volume of the arcuate fasciculus, but not with other tracts. Two other behavioral predictors of dyslexia, rapid naming and letter knowledge, did not correlate with volumes or diffusion values in these tracts. The volume and fractional anisotropy of the left arcuate showed a particularly strong positive correlation with a phoneme blending test. Whole-brain regressions of behavioral scores with diffusion measures confirmed the unique relation between phonological awareness and the left arcuate. These findings indicate that the left arcuate fasciculus, which connects anterior and posterior language regions of the human brain and which has been previously associated with reading ability in older individuals, is already smaller and has less integrity in kindergartners who are at risk for dyslexia because of poor phonological awareness. These findings suggest a structural basis of behavioral risk for dyslexia that predates reading instruction.
Developmental dyslexia is an unexplained inability to acquire accurate or fluent reading that affects approximately 5–17% of children. Dyslexia is associated with structural and functional alterations in various brain regions that support reading. Neuroimaging studies in infants and pre-reading children suggest that these alterations predate reading instruction and reading failure, supporting the hypothesis that variant function in dyslexia susceptibility genes lead to atypical neural migration and/or axonal growth during early, most likely in utero, brain development. Yet, dyslexia is typically not diagnosed until a child has failed to learn to read as expected (usually in second grade or later). There is emerging evidence that neuroimaging measures, when combined with key behavioral measures, can enhance the accuracy of identification of dyslexia risk in prereading children but its sensitivity, specificity, and cost-efficiency is still unclear. Early identification of dyslexia risk carries important implications for dyslexia remediation and the amelioration of the psychosocial consequences commonly associated with reading failure.
Numerous studies have shown that phonological skills are critical for successful reading acquisition. However, how the brain network supporting phonological processing evolves and how it supports the initial course of learning to read is largely unknown. Here, for the first time, we characterized the emergence of the phonological network in 28 children over three stages (prereading, beginning reading, and emergent reading) longitudinally. Across these three time points, decreases in neural activation in the left inferior parietal cortex (LIPC) were observed during an audiovisual phonological processing task, suggesting a specialization process in response to reading instruction/experience. Furthermore, using the LIPC as the seed, a functional network consisting of the left inferior frontal, left posterior occipitotemporal, and right angular gyri was identified. The connection strength in this network co-developed with the growth of phonological skills. Moreover, children with above-average gains in phonological processing showed a significant developmental increase in connection strength in this network longitudinally, while children with below-average gains in phonological processing exhibited the opposite trajectory. Finally, the connection strength between the LIPC and the left posterior occipitotemporal cortex at the prereading level significantly predicted reading performance at the emergent reading stage. Our findings highlight the importance of the early emerging phonological network for reading development, providing direct evidence for the Interactive Specialization Theory and neurodevelopmental models of reading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.