This paper presents the development, testing and validation of SWEEPER, a robot for harvesting sweet pepper fruit in greenhouses. The robotic system includes a six degrees of freedom industrial arm equipped with a specially designed end effector, RGB-D camera, high-end computer with graphics processing unit, programmable logic controllers, other electronic equipment, and a small container to store harvested fruit. All is mounted on a cart that autonomously drives on pipe rails and concrete floor in the end-user environment. The overall operation of the harvesting robot is described along with details of the algorithms for fruit detection and localization, grasp pose estimation, and motion control. The main contributions of this paper are the integrated system design and its validation and extensive field testing in a commercial greenhouse for different varieties and growing conditions. A total of 262 fruits were involved in a 4-week long testing period. The average cycle time to harvest a fruit was 24 s. Logistics took approximately 50% of this time (7.8 s for discharge of fruit and 4.7 s for platform movements). Laboratory experiments have proven that the cycle time can be reduced to 15 s by running the robot manipulator at a higher speed. The harvest success rates were 61% for the best fit crop conditions and 18% in current crop conditions. This reveals the importance of finding the best fit crop conditions and crop varieties for successful robotic harvesting. The SWEEPER robot is the first sweet pepper harvesting robot to demonstrate this kind of performance in a commercial greenhouse.
A number of algorithms for path tracking are described in the robotics literature. Traditional algorithms, like Pure Pursuit and Follow the Carrot, use position information to compute steering commands that make a vehicle follow a predefined path approximately. These algorithms are well known to cut corners, since they do not explicitly take into account the actual curvature of the path. In this paper we present a novel algorithm that uses recorded steering commands to overcome this problem. The algorithm is constructed within the behavioral paradigm common in intelligent robotics, and is divided into three separate behaviors, each responsible for one aspect of the path tracking task. The algorithm is implemented both on a simulator for autonomous forest machines and a physical small-scale robot. The results are compared with the Pure Pursuit and the Follow the Carrot algorithms, and show a significant improvement in performance.
Accurate vehicle localization in forest environments is still an unresolved problem. Global navigation satellite systems (GNSS) have well known limitations in dense forest, and have to be combined with for instance laser based SLAM algorithms to provide satisfying accuracy. Such algorithms typically require accurate detection of trees, and estimation of tree center locations in laser data. Both these operations depend on accurate estimations of tree trunk diameter. Diameter estimations are important also for several other forestry automation and remote sensing applications. This paper evaluates several existing algorithms for diameter estimation using 2D laser scanner data. Enhanced algorithms, compensating for beam width and using multiple scans, were also developed and evaluated. The best existing algorithms overestimated tree trunk diameter by ca. 40%. Our enhanced algorithms, compensating for laser beam width, reduced this error to less than 12%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.