Dutta and co-workers suggest in a recent letter (1) that the SARS-CoV-2 nucleoprotein (N) might be a good vaccine target.…
We have developed a generic transient transfection process at 100 L scale, using HEK293-EBNA cells and PEI as the transfection reagent for the production of recombinant IgG. The process, including large-scale plasmid preparation, expression at bioreactor scale, capture, purification and, if necessary, endotoxin removal allows reproducible production of more than 0.5 g IgG for in vitro and in vivo studies. We compared the performance of two HEK cell lines, investigated the effect of conditioned medium, optimized the DNA:PEI ratio and implemented a feed strategy to prolong the culture time to increase product yield. The transient transfection protocol developed enables a closed process from seeding culture to protein capture. The challenge of performing a medium exchange before transfection at large scale is solved by applying a continuous centrifugation step between the seeding bioreactor and the production bioreactor. After 7-8 days the harvest and capture is performed in a one-step operation using a Streamline expanded bed chromatography system. Following a polishing step the purified antibody is transferred to the final formulation buffer. The method has shown to be reproducible at 10, 50, and 100 L scale expressing between 5 and 8 mg L -1 IgG.
ABSTRACT:Membrane-bound transporter proteins play an important role in the efflux of drugs from cells and can significantly influence the pharmacokinetics of drug molecules. This study describes the production of large amounts of high-activity transporter membrane vesicles from human embryonic kidney 293-Epstein-Barr virus nuclear antigen cells transiently transfected using a Gateway-adapted pCEP4 plasmid. Transfections were scaled up to 10-liter cell cultures, and vesicle preparations were optimized using ultracentrifugation with a sucrose cushion, which enabled us to produce hundreds of milligrams of membrane vesicles expressing human efflux transporter proteins Pglycoprotein (P-gp)/multidrug resistance 1 (ABCB1), multidrug resistance protein 2 (MRP2) (ABCC2), and breast cancer resistance protein (BCRP) (ABCG2). Assays were developed and optimized for analyzing the ATP-dependent functionality of the transporters using probe substrates and specific inhibitors. Excellent signal/noise ratios of ATP-stimulated uptake for P-gp, MRP2, and BCRP vesicles were obtained, indicating high expression of functioning transporters. The uptake kinetics of the transporters was investigated by determining K m and V max using the model substrates N-methylquinidine (P-gp), estradiol-17-glucuronide (MRP2), and estrone-3-sulfate (BCRP). The ATP-dependent transport was inhibited by the model inhibitors verapamil (P-gp), benzbromarone (MRP2), and sulfasalazine (BCRP). The vesicles are thus well suited to screen for possible substrates and inhibitors in high throughput systems or are used for detailed mechanistic investigations of transporter kinetics of specific substances.
New variants in the SARS‐CoV‐2 pandemic are more contagious (Alpha/Delta), evade neutralizing antibodies (Beta), or both (Omicron). This poses a challenge in vaccine development according to WHO. We designed a more universal SARS‐CoV‐2 DNA vaccine containing receptor‐binding domain loops from the huCoV‐19/WH01, the Alpha, and the Beta variants, combined with the membrane and nucleoproteins. The vaccine induced spike antibodies crossreactive between huCoV‐19/WH01, Beta, and Delta spike proteins that neutralized huCoV‐19/WH01, Beta, Delta, and Omicron virus in vitro. The vaccine primed nucleoprotein‐specific T cells, unlike spike‐specific T cells, recognized Bat‐CoV sequences. The vaccine protected mice carrying the human ACE2 receptor against lethal infection with the SARS‐CoV‐2 Beta variant. Interestingly, priming of cross‐reactive nucleoprotein‐specific T cells alone was 60% protective, verifying observations from humans that T cells protect against lethal disease. This SARS‐CoV vaccine induces a uniquely broad and functional immunity that adds to currently used vaccines.
The SARS-CoV-2 pandemic is constantly changing with new variants appearing that are more contagious (Alpha and Delta), evade the neutralising antibody (NAb) response (Beta), or both (Omicron). This is a challenge for vaccine development. We generated a novel universal SARS-CoV-2 DNA vaccine containing the receptor binding domain (RBD) loops from the original huCoV-19/WH01, the Alpha, and the Beta variants, combined with the membrane and nucleoproteins from the huCoV-19/WH01 strain. This vaccine induced high levels of spike antibodies that crossreacted between the huCoV-19/WH01, Beta, and Delta spike proteins, and neutralized the huCoV-19/WH01, Beta, Delta and Omicron virus in vitro. The vaccine induced T cells to all vaccine proteins in mice and rabbits that recognized Bat-CoV N sequences. Finally, the vaccine protected K18 mice against lethal SARS-CoV-2 Beta variant infection, whereas only priming N-specific T cells was 60% protective. This universal SARS-CoV vaccine candidate induces a uniquely broad functional immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.