We consider nonchiral symmetry-protected topological phases of matter in two spatial dimensions protected by a discrete symmetry such as Z K or Z K × Z K symmetry. We argue that modular invariance/noninvariance of the partition function of the one-dimensional edge theory can be used to diagnose whether, by adding a suitable potential, the edge theory can be gapped or not without breaking the symmetry. By taking bosonic phases described by Chern-Simons K-matrix theories and fermionic phases relevant to topological superconductors as an example, we demonstrate explicitly that when the modular invariance is achieved, we can construct an interaction potential that is consistent with the symmetry and can completely gap out the edge state.
We generalize Laughlin's flux insertion argument, originally discussed in the context of the quantum Hall effect, to topological phases protected by non-on-site unitary symmetries, in particular by parity symmetry or parity symmetry combined with an on-site unitary symmetry. As a model, we discuss fermionic or bosonic systems in two spatial dimensions with CP symmetry, which are, by the CPT theorem, related to time-reversal symmetric topological insulators (e.g., the quantum spin Hall effect). In particular, we develop the stability/instability (or "gappability"/"ingappablity") criteria for non-chiral conformal field theories with parity symmetry that may emerge as an edge state of a symmetry-protected topological phase. A necessary ingredient, as it turns out, is to consider the edge conformal field theories on unoriented surfaces, such as the Klein bottle, which arises naturally from enforcing parity symmetry by a projection operation.
CONTENTS
We provide evidence for the mapping of critical spin-1 chains, in particular the SU(3) symmetric bilinearbiquadratic model with additional interactions, to free boson theories using exact diagonalization and the density matrix renormalization group algorithm. Using the correspondence with a conformal field theory with central charge c = 2, we determine the analytic formulae for the scaling dimensions in terms of four TomonagaLuttinger liquid parameters. By matching the lowest scaling dimensions, we numerically calculate these fieldtheoretic parameters and track their evolution as a function of the parameters of the lattice model.
A symmetry analysis is performed on a (2 + 1)-dimensional linear diffusion equation with a nonlinear source term involving the dependent variable and its spatial derivatives. In the first part of the paper, we use the classical method to classify source terms where the original equation admits a nontrivial symmetry. In the second part of the paper, we use the nonclassical method and show that we simply recover the classical symmetries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.