solar collectors, evaporators, condensers and relevant energy storage schemes during thermal charging and discharging. A brief overview of some energy storage options are also presented to motivate the inclusion of thermal energy storage into direct steam generation systems.
This paper presents a geometric optimisation of conjugate cooling channels in forced convection with internal heat generation. Two configurations were studied; circular channels and square channels. The configurations were optimised in such a way that the peak temperatures were minimised subject to the constraint of fixed total global volume. The fluid was forced through the cooling channels by the pressure difference across the channels. The structure has one degree of freedom as design variable: channel hydraulic diameter and once the optimal channel hydraulic diameter is found, optimal elemental volume and channel-tochannel spacing result. A gradient-based optimisation algorithm is applied in order to search for the best and optimal geometric configurations that improve thermal performance by minimising thermal resistance for a wide range of dimensionless pressure difference. This optimiser adequately handles the numerical objective function obtained from CFD simulations. The results obtained show the behaviour of the applied pressure difference on the optimised geometry. There are unique optimal design variables for a given pressure difference. The numerical results obtained are in agreement with the theoretical formulation using scale analysis and method of intersection of asymptotes.
This paper presents a three-dimensional geometric optimisation of cooling channels in forced convection of a vascularised material with the localised self-cooling property subjected to a heat flux. A square configuration was studied with different porosities. Analytical and numerical solutions were provided. The geometrical configuration was optimised in such a way that the peak temperature was minimised at every point in the solid body. The optimisation was subject to the constraint of a fixed global volume of solid material, but the elemental volume was allowed to morph. The solid material was subject to a heat flux on one side and the cooling fluid was forced through the channels from the opposite direction with a specified pressure difference. The structure had three degrees of freedom as design variables: the elemental volume, channel hydraulic diameter and channel-to-channel spacing. A gradient-based optimisation algorithm was used to determine the optimal geometry that gave the lowest thermal resistance. This optimiser adequately handled the numerical objective function obtained from numerical simulations of the fluid flow and heat transfer. The numerical results obtained were in agreement with a theoretical formulation using scale analysis and the method of intersection of asymptotes. The results obtained show that as the pressure difference increases, the minimised thermal resistance decreases. The results also show the behaviour of the applied pressure difference on the optimised geometry. The use of 2 the optimiser made the numerical results to be more robust with respect to the optimum internal configurations of the flow systems and the dimensionless pressure difference.
This paper presents the development of the three-dimensional flow architecture of conjugate cooling channels in forced convection with internal heat generation within the solid for an array of circular cooling channels with different flow orientation. Three flow orientations were studied: array of channels with parallel flow; array of channels in which the flow in every second row is in a counter direction with its neighbours, and flows in all the arrays of channels are in counter flow relative to each other. The geometric configurations were determined in such a way that the peak temperature was minimised subject to the constraint of fixed global volume of solid material. The degrees of freedom of the design were hydraulic diameter and channel to channel spacing. A gradient-based optimisation algorithm was applied to search for the best optimal geometric configurations that improve thermal performance by minimising thermal resistance for a wide range of dimensionless pressure differences. The effect of porosities, applied pressure difference, flow orientation and heat generation rate on the optimal 2 hydraulic diameter and channel to channel spacing is reported. The results show that the effects of dimensionless pressure drop on minimum thermal resistance were consistent with those obtained in the open literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.