To understand fluid induced seismicity, we have designed a large-scale laboratory experiment consisting of a one-cubic-meter sandstone with an artificial fault cut and fluid-injection boreholes. The sandstone block is assembled in a true triaxial loading frame and equipped with 38 piezoelectric sensors to locate and characterise acoustic emission events. The differential stress on the artificial fault is increased in stages to bring it towards a critically stressed state. After each stage of differential stress increase, fluids are injected at low pressures through boreholes to test the potential of fault re-activation. In addition, a high-pressure injection was conducted that created a hydraulic fracture from the injection borehole towards the artificial fault. The newly generated fluid pathway resulted in an activation of the complete block through a stick–slip movement. We compare acoustic emission measurements from the laboratory experiment with seismicity observations from the field-scale CO2 injection at Decatur, Illinois, U.S., and conclude that the existence of fluid pathways plays a decisive role for the potential of induced seismicity.
Storage of energy-related products in the geologic subsurface provides reserve capacity, resilience, and security to the energy supply chain. Sequestration of energy-related products ensures long-term isolation from the environment and, for CO
2
, a reduction in atmospheric emissions. Both porous-rock media and engineered caverns can provide the large storage volumes needed today and in the future. Methods for site characterization and modeling, monitoring, and inventory verification have been developed and deployed to identify and mitigate geologic threats and hazards such as induced seismicity and loss of containment. Broader considerations such as life-cycle analysis; environment, social and governance (ESG) impact; and effective engagement with stakeholders can reduce project uncertainty and cost while promoting sustainability during the ongoing energy transition toward net-zero or low-carbon economies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.