The reactive advanced glycation end product (AGE) precursor methylglyoxal (MGO) and MGO-derived AGEs are associated with diabetic vascular complications and also with an increase in oxidative stress. Glyoxalase-I (GLO-I) transgenic rats were used to explore whether overexpression of this MGO detoxifying enzyme reduces levels of AGEs and oxidative stress in a rat model of diabetes. Rats were made diabetic with streptozotocin, and after 12 weeks, plasma and multiple tissues were isolated for analysis of AGEs, carbonyl stress, and oxidative stress. GLO-I activity was significantly elevated in multiple tissues of all transgenic rats compared with wild-type (WT) littermates. Streptozotocin treatment resulted in a 5-fold increase in blood glucose concentrations irrespective of GLO-I overexpression. Levels of MGO, glyoxal, 3-deoxyglucosone, AGEs, and oxidative stress markers nitrotyrosine, malondialdehyde, and F2-isoprostane were elevated in the diabetic WT rats. In diabetic GLO-I rats, glyoxal and MGO composite scores were significantly decreased by 81%, and plasma AGEs and oxidative stress markers scores were significantly decreased by ϳ50%. Hyperglycemia induced a decrease in protein levels of the mitochondrial oxidative phosphorylation complex in the gastrocnemius muscle, which was accompanied by an increase in the lipid peroxidation product 4-hydroxy-2-nonenal, and this was counteracted by GLO-I overexpression. This study shows for the first time in an in vivo model of diabetes that GLO-I overexpression reduces hyperglycemia-induced levels of carbonyl stress, AGEs, and oxidative stress. The reduction of oxidative stress by GLO-I overexpression directly demonstrates the link between glycation and oxidative stress.Prolonged exposure to hyperglycemia has detrimental effects on various cellular functions and is believed to be the most important factor in the development of vascular complications in diabetes. One of the hypotheses about how hyperglycemia leads to complications is the formation of advanced glycation end products (AGEs) 3 (1). In addition to the formation of AGEs by the classical Maillard reaction (2, 3), dicarbonyls such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucocone (3-DG) are also known to form AGEs. MGO is probably the most important precursor in this formation of AGEs (4). This highly reactive oxo-aldehyde is formed mainly by the non-enzymatic and enzymatic fragmentation of the triose phosphates glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. MGO reacts primarily with arginine residues to form the major AGEs, hydroimidazolone (MG-H1), argpyrimidine (AP) and tetrahydropyrimidine (THP), and with lysine residues to minor AGEs such as N⑀-(1-carboxyethyl)lysine (CEL). MGO is efficiently detoxified by the glyoxalase system. In this pathway MGO reacts with reduced glutathione (GSH) to a hemithioacetal adduct and then to S-Dlactoyl-glutathione, which is catalyzed by glyoxalase-I (GLO-I). This product is converted into D-lactate by glyoxalase-II, thereby reforming the consumed GSH. A s...
Aims/hypothesisImpaired nitric oxide (NO)-dependent vasorelaxation plays a key role in the development of diabetic vascular complications. We investigated the effect of hyperglycaemia on impaired vasoreactivity and a putative role therein of the AGE precursor methylglyoxal.MethodsThe effects of high glucose and methylglyoxal on NO-dependent vasorelaxation in isolated rat mesenteric arteries from wild-type and transgenic glyoxalase (GLO)-I (also known as GLO1) rats, i.e. the enzyme detoxifying methylglyoxal, were recorded in a wire myograph. AGE formation of the major methylglyoxal-adduct 5-hydro-5-methylimidazolone (MG-H1) was detected with an antibody against MG-H1 and quantified with ultra-performance liquid chromatography (tandem) mass spectrometry. Reactive oxygen species formation was measured with a 5-(and-6)-chloromethyl-2′7′-dichlorodihydrofluorescein diacetate acetyl ester probe and by immunohistochemistry with an antibody against nitrotyrosine.ResultsHigh glucose and methylglyoxal exposure of mesenteric arteries significantly reduced the efficacy of NO-dependent vasorelaxation (p < 0.05). This impairment was not observed in mesenteric arteries of GLO-I transgenic rats indicating a specific intracellular methylglyoxal effect. The diabetes-induced impaired potency (pD2) in mesenteric arteries of wild-type rats was significantly improved by GLO-I overexpression (p < 0.05). Methylglyoxal-modified albumin did not affect NO-dependent vasorelaxation, while under the same conditions the receptor for AGE ligand S100b did (p < 0.05). Methylglyoxal treatment of arteries increased intracellular staining of MG-H1 in endothelial cells and adventitia by fivefold accompanied by an eightfold increase in the oxidative stress marker nitrotyrosine. Antioxidant pre-incubation prevented methylglyoxal-induced impairment of vasoreactivity.Conclusions/interpretationThese data show that hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation is mediated by increased intracellular methylglyoxal levels in a pathway dependent on oxidative stress.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-010-1677-0) contains supplementary material, which is available to authorised users.
Aims/hypothesis In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed the MGO-detoxifying enzyme glyoxalase-I (GLO-I), to determine the impact of intracellular glycation on vascular function and the development of early renal changes in diabetes. Methods Wild-type and Glo1 -overexpressing rats were rendered diabetic for a period of 24 weeks by intravenous injection of streptozotocin. Mesenteric arteries were isolated to study ex vivo vascular reactivity with a wire myograph and kidneys were processed for histological examination. Glycation was determined by mass spectrometry and immunohistochemistry. Markers for inflammation, endothelium dysfunction and renal dysfunction were measured with ELISA-based techniques. Results Diabetes-induced formation of AGEs in mesenteric arteries and endothelial dysfunction were reduced by Glo1 overexpression. Despite the absence of advanced nephrotic lesions, early markers of renal dysfunction (i.e. increasedElectronic supplementary material The online version of this article
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.