The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields. Using OLCI spectral reflectance measurements in the range 400–1020 nm, we derived important snow properties such as spectral and broadband albedo, snow specific surface area, snow extent and grain size on a spatial grid of 300 m. The algorithm also incorporated cloud screening and atmospheric correction procedures over snow surfaces. We present validation results using ground measurements from Antarctica, the Greenland ice sheet and the French Alps. We find the spectral albedo retrieved with accuracy of better than 3% on average, making our retrievals sufficient for a variety of applications. Broadband albedo is retrieved with the average accuracy of about 5% over snow. Therefore, the uncertainties of satellite retrievals are close to experimental errors of ground measurements. The retrieved surface grain size shows good agreement with ground observations. Snow specific surface area observations are also consistent with our OLCI retrievals. We present snow albedo and grain size mapping over the inland ice sheet of Greenland for areas including dry snow, melted/melting snow and impurity rich bare ice. The algorithm can be applied to OLCI Sentinel-3 measurements providing an opportunity for creation of long-term snow property records essential for climate monitoring and data assimilation studies—especially in the Arctic region, where we face rapid environmental changes including reduction of snow/ice extent and, therefore, planetary albedo.
We present an update of the Snow and Ice (SICE) property retrieval algorithm based on the spectral measurements of Ocean and Land Color Instrument (OLCI) onboard Sentinel-3 satellites combined with the asymptotic radiative transfer theory valid for weakly absorbing turbid media. The main improvements include the introduction of a new atmospheric correction, retrieval of snow impurity load and properties, retrievals for partially snow-covered ground and also accounting for various thresholds to be used to assess the retrieval quality. The technique can be applied to various optical sensors (satellite and ground-based) operated in the visible and near infrared regions of electromagnetic spectra.
Drought in Australia has widespread impacts on agriculture and ecosystems. Satellite-based Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) has great potential to monitor and assess drought impacts on vegetation greenness and health. Various FAPAR products based on satellite observations have been generated and made available to the public. However, differences remain among these datasets due to different retrieval methodologies and assumptions. The Quality Assurance for Essential Climate Variables (QA4ECV) project recently developed a quality assurance framework to provide understandable and traceable quality information for Essential Climate Variables (ECVs). The QA4ECV FAPAR is one of these ECVs. The aim of this study is to investigate the capability of QA4ECV FAPAR for drought monitoring in Australia. Through spatial and temporal comparison and correlation analysis with widely used Moderate Resolution Imaging Spectroradiometer (MODIS), Satellite Pour l’Observation de la Terre (SPOT)/PROBA-V FAPAR generated by Copernicus Global Land Service (CGLS), and the Standardized Precipitation Evapotranspiration Index (SPEI) drought index, as well as the European Space Agency’s Climate Change Initiative (ESA CCI) soil moisture, the study shows that the QA4ECV FAPAR can support agricultural drought monitoring and assessment in Australia. The traceable and reliable uncertainties associated with the QA4ECV FAPAR provide valuable information for applications that use the QA4ECV FAPAR dataset in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.