An elliptic partial differential equation Lu=f with a zero Dirichlet boundary
condition is converted to an equivalent elliptic equation on the unit ball. A
spectral Galerkin method is applied to the reformulated problem, using
multivariate polynomials as the approximants. For a smooth boundary and smooth
problem parameter functions, the method is proven to converge faster than any
power of 1/n with n the degree of the approximate Galerkin solution. Examples
in two and three variables are given as numerical illustrations. Empirically,
the condition number of the associated linear system increases like O(N), with
N the order of the linear system.Comment: This is latex with the standard article style, produced using
Scientific Workplace in a portable format. The paper is 22 pages in length
with 8 figure
Let be an open, simply connected, and bounded region in R d , d ≥ 2, and assume its boundary ∂ is smooth. Consider solving the elliptic partial differential equation − u + γ u = f over with a Neumann boundary condition. The problem is converted to an equivalent elliptic problem over the unit ball B, and then a spectral method is given that uses a special polynomial basis. In the case the Neumann problem is uniquely solvable, and with sufficiently smooth problem parameters, the method is shown to have very rapid convergence. Numerical examples illustrate exponential convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.