Background The purpose of this study was to identify factors associated with a high risk of involuntary psychiatric in-patient hospitalization both on the individual level and on the level of mental health services and the socioeconomic environment that patients live in. Methods The present study expands on a previous analysis of the health records of 5764 cases admitted as in-patients in the four psychiatric hospitals of the Metropolitan City of Cologne, Germany, in the year 2011 (1773 cases treated under the Mental Health Act and 3991 cases treated voluntarily). Our previous analysis had included medical, sociodemographic and socioeconomic data of every case and used a machine learning-based prediction model employing chi-squared automatic interaction detection (CHAID). Our current analysis attempts to improve the previous one through (1) optimizing the machine learning procedures (use of a different type of decision-tree prediction model (Classification and Regression Trees (CART) and application of hyperparameter tuning (HT)), and (2) the addition of patients’ environmental socioeconomic data (ESED) to the data set. Results Compared to our previous analysis, model fit was improved. Main diagnoses of an organic mental or a psychotic disorder (ICD-10 groups F0 and F2), suicidal behavior upon admission, admission outside of regular service hours and absence of outpatient treatment prior to admission were confirmed as powerful predictors of detention. Particularly high risks were shown for (1) patients with an organic mental disorder, specifically if they were retired, admitted outside of regular service hours and lived in assisted housing, (2) patients with suicidal tendencies upon admission who did not suffer from an affective disorder, specifically if it was unclear whether there had been previous suicide attempts, or if the affected person lived in areas with high unemployment rates, and (3) patients with psychosis, specifically those who lived in densely built areas with a large proportion of small or one-person households. Conclusions Certain psychiatric diagnoses and suicidal tendencies are major risk factors for involuntary psychiatric hospitalization. In addition, service-related and environmental socioeconomic factors contribute to the risk for detention. Identifying modifiable risk factors and particularly vulnerable risk groups should help to develop suitable preventive measures.
Background We aimed to identify differences in predictors of involuntary psychiatric hospitalisation depending on whether the inpatient stay was involuntary right from the beginning since admission or changed from voluntary to involuntary in the course of in-patient treatment. Methods We conducted an analysis of 1,773 mental health records of all cases treated under the Mental Health Act in the city of Cologne in the year 2011. 79.4% cases were admitted involuntarily and 20.6% were initially admitted on their own will and were detained later during the course of in-patient stay. We compared the clinical, sociodemographic, socioeconomic and environmental socioeconomic data (ESED) of the two groups. Finally, we employed two different machine learning decision-tree algorithms, Chi-squared Automatic Interaction Detection (CHAID) and Random Forest. Results Most of the investigated variables did not differ and those with significant differences showed consistently low effect sizes. In the CHAID analysis, the first node split was determined by the hospital the patient was treated at. The diagnosis of a psychotic disorder, an affective disorder, age, and previous outpatient treatment as well as the purchasing power per 100 inhabitants in the living area of the patients also played a role in the model. In the Random Forest, age and the treating hospital had the highest impact on the accuracy and decrease in Gini of the model. However, both models achieved a poor balanced accuracy. Overall, the decision-tree analyses did not yield a solid, causally interpretable prediction model. Conclusion Cases with detention at admission and cases with detention in the course of in-patient treatment were largely similar in respect to the investigated variables. Our findings give no indication for possible differential preventive measures against coercion for the two subgroups. There is no need or rationale to differentiate the two subgroups in future studies.
Background: The purpose of this study was to identify factors associated with a high risk of involuntary psychiatric in-patient hospitalization both on the individual level and on the level of mental health services and the socioeconomic environment that patients live in. Methods: The present study expands on a previous analysis of the health records of 5764 cases admitted as in-patients in the four psychiatric hospitals of the Metropolitan City of Cologne, Germany, in the year 2011 (1773 cases treated under the Mental Health Act and 3991 cases treated voluntarily). Our previous analysis had included medical, sociodemographic and socioeconomic data of every case and used a machine learning-based prediction model employing chi-squared automatic interaction detection (CHAID). Our current analysis attempts to improve the previous one through (1) optimizing the machine learning procedures (use of a different type of decision-tree prediction model (CART) and application of hyperparameter tuning), and (2) the addition of socioeconomic data on the patients’ environment to the data set. Results: Compared to our previous analysis, model fit was improved. Main diagnoses of an organic mental or a psychotic disorder (ICD-10 groups F0 and F2), suicidal behavior upon admission, admission outside of regular service hours and absence of outpatient treatment prior to admission were confirmed as powerful predictors of detention. Particularly high risks were shown for (1) patients with an organic mental disorder, specifically if they were retired, admitted outside of regular service hours and lived in assisted housing, (2) patients with suicidal tendencies upon admission who did not suffer from an affective disorder, specifically if it was unclear whether there had been previous suicide attempts, or if the affected person lived in areas with high unemployment rates, and (3) patients with psychosis, specifically those who lived in densely built areas with a large proportion of small or one-person households. Conclusions: Certain psychiatric diagnoses and suicidal tendencies are major risk factors for involuntary psychiatric hospitalization. In addition, service-related and environmental socioeconomic factors contribute to the risk for detention. Identifying modifiable risk factors and particularly vulnerable risk groups should help to develop suitable preventive measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.