PurposeBoth exercise and hypoxia cause complex changes in acid–base homeostasis. The aim of the present study was to investigate whether during intense physical exercise in normoxia and hypoxia, the modified physicochemical approach offers a better understanding of the changes in acid–base homeostasis than the traditional Henderson–Hasselbalch approach.MethodsIn this prospective, randomized, crossover trial, 19 healthy males completed an exercise test until voluntary fatigue on a bicycle ergometer on two different study days, once during normoxia and once during normobaric hypoxia (12% oxygen, equivalent to an altitude of 4500 m). Arterial blood gases were sampled during and after the exercise test and analysed according to the modified physicochemical and Henderson–Hasselbalch approach, respectively.ResultsPeak power output decreased from 287 ± 9 Watts in normoxia to 213 ± 6 Watts in hypoxia (−26%, P < 0.001). Exercise decreased arterial pH to 7.21 ± 0.01 and 7.27 ± 0.02 (P < 0.001) during normoxia and hypoxia, respectively, and increased plasma lactate to 16.8 ± 0.8 and 17.5 ± 0.9 mmol/l (P < 0.001). While the Henderson–Hasselbalch approach identified lactate as main factor responsible for the non-respiratory acidosis, the modified physicochemical approach additionally identified strong ions (i.e. plasma electrolytes, organic acid ions) and non-volatile weak acids (i.e. albumin, phosphate ion species) as important contributors.ConclusionsThe Henderson–Hasselbalch approach might serve as basis for screening acid–base disturbances, but the modified physicochemical approach offers more detailed insights into the complex changes in acid–base status during exercise in normoxia and hypoxia, respectively.Electronic supplementary materialThe online version of this article (doi:10.1007/s00421-017-3712-z) contains supplementary material, which is available to authorized users.
One of the main limiting factors in pediatric liver transplantation is donor availability. For adults, DCD liver grafts are increasingly used to expand the donor pool. To improve outcome after DCD liver transplantation, ex situ machine perfusion is used as an alternative organ preservation strategy, with the supplemental value of providing oxygen to the graft during preservation. We here report the first successful transplantation of a pediatric DCD liver graft after hypothermic oxygenated machine perfusion. The full‐size liver graft was derived from a 13‐year‐old, female DCD donor and was end‐ischemic pretreated with dual hypothermic oxygenated machine perfusion. Arterial and portal pressures were set at 18 and 4 mm Hg, slightly lower than protocolized settings for adult livers. During 2 hours of machine perfusion, portal and arterial flows increased from 100 to 210 mL/min and 30 to 63 mL/min, respectively. The pretreated liver graft was implanted in a 16‐year‐old girl with progressive familial intrahepatic cholestasis type 2. Postoperative AST, ALT, and prothrombin time normalized within a week. The recipient quickly recovered and was discharged from the hospital after 18 days. One year after transplantation, she is in excellent condition with a completely normal liver function and histology. This case is the first report of successful transplantation of a pediatric DCD liver graft after hypothermic oxygenated machine perfusion and illustrates the potential role of ex situ machine perfusion in expanding the donor pool and improving outcome after pediatric liver transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.