Using our framework supporting simultaneous behavioral to RTL synthesis, component-wise floorplanning, as well as ABB (adaptive body biasing) and VDD aware power and delay prediction, we present a performance neutral methodology for optimal VDD-island generation and multiple ABB application. We show that tuning supply and body voltage for the entire design reduces the total energy dissipation by 4.6−38.1% without any performance loss. By allowing more than one body voltage and without optimizing the floorplan, the savings do not rise any further. Carefully floorplanning the design, we can additionally use VDD-islands reducing the power by 8.7 − 49.2%. In addition to the power savings, the power and delay variability due to PTV (process, temperature, voltage) variation can be reduced with all proposed ABB approaches, assuming that only the chip structure has to be fixed at design time, but the voltage levels can be adapted after the system manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.