Acceleration and collision of particles has been a key strategy for exploring the texture of matter. Strong light waves can control and recollide electronic wavepackets, generating high-harmonic radiation that encodes the structure and dynamics of atoms and molecules and lays the foundations of attosecond science. The recent discovery of high-harmonic generation in bulk solids combines the idea of ultrafast acceleration with complex condensed matter systems, and provides hope for compact solid-state attosecond sources and electronics at optical frequencies. Yet the underlying quantum motion has not so far been observable in real time. Here we study high-harmonic generation in a bulk solid directly in the time domain, and reveal a new kind of strong-field excitation in the crystal. Unlike established atomic sources, our solid emits high-harmonic radiation as a sequence of subcycle bursts that coincide temporally with the field crests of one polarity of the driving terahertz waveform. We show that these features are characteristic of a non-perturbative quantum interference process that involves electrons from multiple valence bands. These results identify key mechanisms for future solid-state attosecond sources and next-generation light-wave electronics. The new quantum interference process justifies the hope for all-optical band-structure reconstruction and lays the foundation for possible quantum logic operations at optical clock rates.
Silver coating gold nanorods reduces the ensemble plasmon line width by changing the relation connecting particle shape and plasmon resonance wavelength. This change, we term "plasmonic focusing", leads to less variation of resonance wavelengths for the same particle size distribution. We also find smaller single particle linewidth comparing resonances at the same wavelength but show that this does not contribute to the ensemble linewidth narrowing.
The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.
We report a quantitative analysis of the forces acting on optically trapped single gold nanorods. Individual nanorods with diameters between 8 and 44 nm and aspect ratios between 1.7 and 5.6 were stably trapped in three dimensions using a laser wavelength exceeding their plasmon resonance wavelengths. The interaction between the electromagnetic field of an optical trap and a single gold nanorod correlated with particle polarizability, which is a function of both particle volume and aspect ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.