Chronic hepatitis B virus (HBV) infection is a major cause of liver disease. Only interferon-alpha and the nucleosidic inhibitors of the viral polymerase, 3TC and adefovir, are approved for therapy. However, these therapies are limited by the side effects of interferon and the substantial resistance of the virus to nucleosidic inhibitors. Potent new antiviral compounds suitable for monotherapy or combination therapy are highly desired. We describe non-nucleosidic inhibitors of HBV nucleocapsid maturation that possess in vitro and in vivo antiviral activity. These inhibitors have potential for future therapeutic regimens to combat chronic HBV infection.
The vast majority of the world population is infected with at least one member of the human herpesvirus family. Herpes simplex virus (HSV) infections are the cause of cold sores and genital herpes as well as life-threatening or sight-impairing disease mainly in immunocompromized patients, pregnant women and newborns. Since the milestone development in the late 1970s of acyclovir (Zovirax), a nucleosidic inhibitor of the herpes DNA polymerase, no new non-nucleosidic anti-herpes drugs have been introduced. Here we report new inhibitors of the HSV helicase-primase with potent in vitro anti-herpes activity, a novel mechanism of action, a low resistance rate and superior efficacy against HSV in animal models. BAY 57-1293 (N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide), a well-tolerated member of this class of compounds, significantly reduces time to healing, prevents rebound of disease after cessation of treatment and, most importantly, reduces frequency and severity of recurrent disease. Thus, this class of drugs has significant potential for the treatment of HSV disease in humans, including those resistant to current medications.
While these studies also suggest that the molecular mechanism of BAY 38-4766 is distinct from that of benzimidazole ribonucleosides, they also offer an explanation for the excellent specificity and tolerability of BAY 38-4766, since mammalian DNA does not undergo comparable maturation steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.