An active involvement of blood–brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune encephalomyelitis (EAE).Endothelial basement membranes contained laminin 8 (α4β1γ1) and/or 10 (α5β1γ1) and their expression was influenced by proinflammatory cytokines or angiostatic agents. T cells emigrating into the CNS during EAE encountered two biochemically distinct basement membranes, the endothelial (containing laminins 8 and 10) and the parenchymal (containing laminins 1 and 2) basement membranes. However, inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin 8, whereas in the presence of laminin 10 no infiltration was detectable. In vitro assays using encephalitogenic T cell lines revealed adhesion to laminins 8 and 10, whereas binding to laminins 1 and 2 could not be induced. Downregulation of integrin α6 on cerebral endothelium at sites of T cell infiltration, plus a high turnover of laminin 8 at these sites, suggested two possible roles for laminin 8 in the endothelial basement membrane: one at the level of the endothelial cells resulting in reduced adhesion and, thereby, increased penetrability of the monolayer; and secondly at the level of the T cells providing direct signals to the transmigrating cells.
Endothelial cells of the blood and lymphatic vasculature are polarized cells with luminal surfaces specialized to interact with inflammatory cells upon the appropriate stimulation; they contain specialized transcellular transport systems, and their basal surfaces are attached to an extracellular basement membrane. In adult tissues the basement membrane forms a continuous sleeve around the endothelial tubes, and the interaction of endothelial cells with basement membrane components plays an important role in the maintenance of vessel wall integrity. During development, the basement membrane of endothelium provides distinct spatial and molecular information that influences endothelial cell proliferation, migration, and differentiation/maturation. Microvascular endothelium matures into phenotypically distinct types: continuous, fenestrated, and discontinuous, which also differ in their permeability properties. Development of these morphological and physiological differences is thought to be controlled by both soluble factors in the organ or tissue environment and by cell-cell and cell-matrix interactions. Basement membranes of endothelium, like those of other tissues, are composed of laminins, type IV collagens, heparan sulfate proteoglycans, and nidogens. However, isoforms of all four classes of molecules exist, which combine to form structurally and functionally distinct basement membranes. The endothelial cell basement membranes have been shown to be unique with respect to their laminin isoform composition. Laminins are a family of glycoprotein heterotrimers composed of an alpha, beta, and gamma chain. To date, 5alpha, 4beta, and 3gamma laminin chains have been identified that can combine to form 15 different isoforms. The laminin alpha-chains are considered to be the functionally important portion of the heterotrimers, as they exhibit tissue-specific distribution patterns and contain the major cell interaction sites. Vascular endothelium expresses only two laminin isoforms, and their expression varies depending on the developmental stage, vessel type, and the activation state of the endothelium. Laminin 8 (composed of laminin alpha4, beta1, and gamma1 chains) is expressed by all endothelial cells regardless of their stage of development, and its expression is strongly upregulated by cytokines and growth factors that play a role in inflammatory events. Laminin 10 (composed of laminin alpha5, beta1, and gamma1 chains) is detectable primarily in endothelial cell basement membranes of capillaries and venules commencing 3-4 wk after birth. In contrast to laminin 8, endothelial cell expression of laminin 10 is upregulated only by strong proinflammatory signals and, in addition, angiostatic agents such as progesterone. Other extracellular matrix molecules, such as BM40 (also known as SPARC/osteonectin), thrombospondins 1 and 2, fibronectin, nidogens 1 and 2, and collagen types VIII, XV, and XVIII, are also differentially expressed by endothelium, varying with the endothelium type and/or pathophysiological state. The da...
Congenital nephrotic syndrome (CNS) is clinically and genetically heterogeneous, with mutations in WT1, NPHS1 and NPHS2 accounting for part of cases. We recently delineated a new autosomal recessive entity comprising CNS with diffuse mesangial sclerosis and distinct ocular anomalies with microcoria as the leading clinical feature (Pierson syndrome). On the basis of homozygosity mapping to markers on chromosome 3p14-p22, we identified homozygous or compound heterozygous mutations of LAMB2 in patients from five unrelated families. Most disease-associated alleles were truncating mutations. Using immunohistochemistry and western blotting we could demonstrate that the respective LAMB2 mutations lead to loss of laminin beta2 expression in kidney and other tissues studied. Laminin beta2 is known to be abundantly expressed in the glomerular basement membrane (GBM) where it is thought to play a key role in anchoring as well as differentiation of podocyte foot processes. Lamb2 knockout mice were reported to exhibit congenital nephrosis in association with anomalies of retina and neuromuscular junctions. By studying ocular laminin beta2 expression in unaffected controls, we detected the strongest expression in the intraocular muscles corresponding well to the characteristic hypoplasia of ciliary and pupillary muscles observed in patients. Moreover, we present first clinical evidence of severe impairment of vision and neurodevelopment due to LAMB2 defects. Our current data suggest that human laminin beta2 deficiency is consistently and specifically associated with this particular oculorenal syndrome. In addition, components of the molecular interface between GBM and podocyte foot processes come in the focus as potential candidates for isolated and syndromic CNS.
In collagen-induced arthritis, a murine autoimmune model for rheumatoid arthritis, immunization with native but not heat-denatured cartilage-specific collagen type II (CII) induces a B cell response that largely contributes to arthritogenicity. Previously, we have shown that monoclonal antibodies established from arthritis prone DBA/1 mice require the triple-helical conformation of their epitopes for antigen recognition. Here, we present a novel approach to characterize arthritis-related conformational epitopes by preparing a panel of 130 chimeric collagen X/CII molecules. The insertion of a series of CII cassettes into the triple-helical recombinant collagen X allowed for the first time the identification of five triple-helical immunodominant domains of 5-11 amino acid length, to which 75% of 36 monoclonal antibodies bound. A consensus motif, "R G hydrophobic," was found in all immunodominant epitopes. The antibodies were encoded by a certain combination of Vgenes in germline configuration, indicating a role of the consensus motif in V-gene selection. The immunodominant domains are spread over the entire monomeric CII molecule with no apparent order; however, a highly organized arrangement became apparent when the CII molecules were displayed in the quarter-staggered assembly within a fibril. This discrete epitope organization most likely reflects structural constraints that restrict the exposure of CII epitopes on the surface of heterotypically assembled cartilage fibrils. Thus, our data suggest a preimmune B cell selection process that is biased by the accessibility of CII determinants in the intact cartilage tissue.Rheumatoid arthritis is the most common chronic inflammatory joint disease in humans. The disease is genetically linked to the MHC-II 1 region (1) and characterized by relapsing inflammation of synovial tissue and progressive destruction of cartilage and subchondral bone. The driving force of this disorder is still obscure. However, immune responses toward cartilage-specific antigens, particularly B cell responses against type II collagen (CII), indicate a pathogenic role of cartilagespecific autoimmunity (2-5). CII, the predominant collagenous component of cartilage, is one of the candidate autoantigens potentially fueling tissuespecific immune reactions in peripheral joints. Immunization with CII is associated with development of autoimmune arthritis in several species (6 -8). Collagen-induced arthritis (CIA) shares many characteristics with human rheumatoid arthritis. As most extensively studied in mice, the development of CIA is strongly associated with certain MHC-II haplotypes (9, 10), indicating that the model is dependent on T cell recognition of a restricted set of CII peptides presented by appropriate MHC molecules (11). Indeed, peptides derived from the same region of CII (amino acid residues (aa) 256 -270) are bound by both DR4 and A q molecules (10, 12), whose expression is genetically associated with rheumatoid arthritis and CIA, respectively.T cell recognition of proteolytically pro...
Regulated adhesion of leukocytes to the extracellular matrix is essential for transmigration of blood vessels and subsequent migration into the stroma of inflamed tissues. Although beta(2)-integrins play an indisputable role in adhesion of polymorphonuclear granulocytes (PMN) to endothelium, we show here that beta(1)- and beta(3)-integrins but not beta(2)-integrin are essential for the adhesion to and migration on extracellular matrix molecules of the endothelial cell basement membrane and subjacent interstitial matrix. Mouse wild type and beta(2)-integrin null PMN and the progranulocytic cell line 32DC13 were employed in in vitro adhesion and migration assays using extracellular matrix molecules expressed at sites of extravasation in vivo, in particular the endothelial cell laminins 8 and 10. Wild type and beta(2)-integrin null PMN showed the same pattern of ECM binding, indicating that beta(2)-integrins do not mediate specific adhesion of PMN to the extracellular matrix molecules tested; binding was observed to the interstitial matrix molecules, fibronectin and vitronectin, via integrins alpha(5)beta(1) and alpha(v)beta(3), respectively; to laminin 10 via alpha(6)beta(1); but not to laminins 1, 2, and 8, collagen type I and IV, perlecan, or tenascin-C. PMN binding to laminins 1, 2, and 8 could not be induced despite surface expression of functionally active integrin alpha(6)beta(1), a major laminin receptor, demonstrating that expression of alpha(6)beta(1) alone is insufficient for ligand binding and suggesting the involvement of accessory factors. Nevertheless, laminins 1, 8, and 10 supported PMN migration, indicating that differential cellular signaling via laminins is independent of the extent of adhesion. The data demonstrate that adhesive and nonadhesive interactions with components of the endothelial cell basement membrane and subjacent interstitium play decisive roles in controlling PMN movement into sites of inflammation and illustrate that beta(2)-integrins are not essential for such interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.