Abstract. Nowadays, the number of connected devices providing unstructured data is rapidly rising. These devices acquire data with a temporal and spatial resolution at an unprecedented level creating an influx of geoinformation which, however, lacks semantic information. Simultaneously, structured datasets like semantic 3D city models are widely available and assure rich semantics and high global accuracy but are represented by rather coarse geometries. While the mentioned downsides curb the usability of these data types for nowadays’ applications, the fusion of both shall maximize their potential. Since testing and developing automated driving functions stands at the forefront of the challenges, we propose a pipeline fusing structured (CityGML and HD Map datasets) and unstructured datasets (MLS point clouds) to maximize their advantages in the automatic 3D road space models reconstruction domain. The pipeline is a parameterized end-to-end solution that integrates segmentation, reconstruction, and modeling tasks while ensuring geometric and semantic validity of models. Firstly, the segmentation of point clouds is supported by the transfer of semantics from a structured to an unstructured dataset. The distinction between horizontal- and vertical-like point cloud subsets enforces a further segmentation or an immediate refinement while only adequately depicted models by point clouds are allowed. Then, based on the classified and filtered point clouds the input 3D model geometries are refined. Building upon the refinement, the semantic enrichment of the 3D models is presented. The deployment of a simulation engine for automated driving research and a city model database tool underlines the versatility of possible application areas.
Abstract. Point clouds are widely regarded as one of the best dataset types for urban mapping purposes. Hence, point cloud datasets are commonly investigated as benchmark types for various urban interpretation methods. Yet, few researchers have addressed the use of point cloud benchmarks for façade segmentation. Robust façade segmentation is becoming a key factor in various applications ranging from simulating autonomous driving functions to preserving cultural heritage. In this work, we present a method of enriching existing point cloud datasets with façade-related classes that have been designed to facilitate façade segmentation testing. We propose how to efficiently extend existing datasets and comprehensively assess their potential for façade segmentation. We use the method to create the TUM-FAÇADE dataset, which extends the capabilities of TUM-MLS-2016. Not only can TUM-FAÇADE facilitate the development of point-cloud-based façade segmentation tasks, but our procedure can also be applied to enrich further datasets.
Abstract. Throughout the years, semantic 3D city models have been created to depict 3D spatial phenomenon. Recently, an increasing number of mobile laser scanning (MLS) units yield terrestrial point clouds at an unprecedented level. Both dataset types often depict the same 3D spatial phenomenon differently, thus their fusion should increase the quality of the captured 3D spatial phenomenon. Yet, each dataset has modality-dependent uncertainties that hinder their immediate fusion. Therefore, we present a method for fusing MLS point clouds with semantic 3D building models while considering uncertainty issues. Specifically, we show MLS point clouds coregistration with semantic 3D building models based on expert confidence in evaluated metadata quantified by confidence interval (CI). This step leads to the dynamic adjustment of the CI, which is used to delineate matching bounds for both datasets. Both coregistration and matching steps serve as priors for a Bayesian network (BayNet) that performs application-dependent identity estimation. The BayNet propagates uncertainties and beliefs throughout the process to estimate end probabilities for confirmed, unmodeled, and other city objects. We conducted promising preliminary experiments on urban MLS and CityGML datasets. Our strategy sets up a framework for the fusion of MLS point clouds and semantic 3D building models. This framework aids the challenging parallel usage of such datasets in applications such as façade refinement or change detection. To further support this process, we open-sourced our implementation.
Abstract. Semantic 3D building models are widely available and used in numerous applications. Such 3D building models display rich semantics but no façade openings, chiefly owing to their aerial acquisition techniques. Hence, refining models’ façades using dense, street-level, terrestrial point clouds seems a promising strategy. In this paper, we propose a method of combining visibility analysis and neural networks for enriching 3D models with window and door features. In the method, occupancy voxels are fused with classified point clouds, which provides semantics to voxels. Voxels are also used to identify conflicts between laser observations and 3D models. The semantic voxels and conflicts are combined in a Bayesian network to classify and delineate façade openings, which are reconstructed using a 3D model library. Unaffected building semantics is preserved while the updated one is added, thereby upgrading the building model to LoD3. Moreover, Bayesian network results are back-projected onto point clouds to improve points’ classification accuracy. We tested our method on a municipal CityGML LoD2 repository and the open point cloud datasets: TUM-MLS-2016 and TUM-FAÇADE. Validation results revealed that the method improves the accuracy of point cloud semantic segmentation and upgrades buildings with façade elements. The method can be applied to enhance the accuracy of urban simulations and facilitate the development of semantic segmentation algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.