This study explores the possibility of using iron-loaded sepiolite, obtained by recovering iron from polluted water, as a catalyst in the electro-Fenton oxidation of organic pollutants in textile effluents. The removal of iron ions from aqueous solution by adsorption on sepiolite was studied in batch tests at iron concentrations between 100 and 1,000 ppm. Electro-Fenton experiments were carried out in an electrochemical cell with a working volume of 0.15 L, an air flow of 1 L/min, and 3 g of iron-loaded sepiolite. An electric field was applied using a boron-doped diamond anode and a graphite sheet cathode connected to a direct current power supply with a constant potential drop. Reactive Black 5 (100 mg/L) was selected as the model dye. The adsorption isotherms proved the ability of the used adsorbent. The removal of the iron ion by adsorption on sepiolite was in the range of 80-100 % for the studied concentration range. The Langmuir and Freundlich isotherms were found to be applicable in terms of the relatively high regression values. Iron-loaded sepiolite could be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process. Successive batch processes were performed at optimal working conditions (5 V and pH 2). The results indicate the suitability of the proposed combined process, adsorption to iron remediation followed by the application of the obtained iron-loaded sepiolite to the electro-Fenton technique, to oxidize polluted effluents.
The degradation of m-cresol (MC) has been investigated by a heterogeneous electro-Fenton process using iron loaded activated carbon (Fe-AC) as the heterogeneous electro-Fenton catalyst. Experimental results demonstrated that MC was effectively removed through an electro-Fenton process. Calculated TOC removal and overall energy consumption showed that the use of a low iron concentration (28 mg L À1 ) increases the efficiency of the process. The reactions followed a pseudo-first order kinetic equation and kinetic coefficients confirm that the MC reduction, when it is alone, is faster than in the presence of a similar compound, tert-butylhydroquinone (TBHQ) (from 0.0935 to 0.0692 min À1 ); therefore TBHQ exerts an antioxidative protection effect. In all cases, it is concluded that heterogeneous electro-Fenton treatment with Fe-AC follows a two-step process: adsorption and oxidation; allowing removal rates higher than in the literature. In addition, the reusability of this catalyst was demonstrated by operating it in continuous mode. Finally, LC-MS analysis allowed the development of a plausible degradation route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.