The mechanism of the stereospecific gold(I)-catalyzed Rautenstrauch rearrangement of (E)-1-ethynyl-2-methyl-but-2-en-yl acetate to 3,4-dimethyl-cyclopent-2-enone has been computationally addressed using DFT (B3LYP/6-31G, SDD for Au). Our results indicate that the bond formation event follows the Au(I)-induced acetyl transfer to the vicinal alkyne and that it is the helicity of the pentadienyl cation intermediate which keeps memory of the chiral information. The fidelity of the center-to-helix-to-center chirality transfer requires that the rates of helix interconversion and pivaloyl rotation are slower than the cyclization, as calculations predict.
The present contribution reports experimental and theoretical mechanistic investigations on a normal-to-abnormal (C2-to-C4-bonded) NHC rearrangement processes occurring with bulky group 13 metal NHC adducts, including the scope of such a reactivity for Al compounds. The sterically congested adducts (nItBu)MMe3 (nItBu=1,3-di-tert-butylimidazol-2-ylidene; M=Al, Ga, In; 1 a-c) readily rearrange to quantitatively afford the corresponding C4-bonded complexes (aItBu)MMe3 (4 a-c), a reaction that may be promoted by THF. Thorough experimental data and DFT calculations were performed on the nNHC-to-aNHC process converting the Al-nNHC (1 a) to its aNHC analogue 4 a. A nItBu/aItBu isomerization is proposed to account for the formation of the thermodynamic product 4 a through reaction of transient aItBu with THF-AlMe3 . The reaction of benzophenone with (nItBu)AlMe3 afforded the zwitterionic species (aItBu)(CPh2 -O-AlMe3 ) (6), reflecting the unusual reactivity that such bulky adducts may display. Interestingly, the nItBu/Al(iBu)3 Lewis pair behaves like a frustrated Lewis pair (FLP) since it readily reacts with H2 under mild conditions. This may open the way to future reactivity developments involving commonly used trialkylaluminum precursors.
At the 6-311G* level of theory, DFT methods predict that the rearrangement of 1,4-dihydroxy-5-methylpentadienyl cation 1 (R = Me) to protonated trans-3-hydroxy-2-methylcyclopent-4-en-1-one 2, an intermediate step in the Piancatelli reaction or rearrangement of furfuryl carbinols to trans-2-alkyl(aryl)-3-hydroxycyclopent-4-en-1-one, is a concerted electrocyclic process. Energetic, magnetic, and stereochemical criteria are consistent with a conrotatory electrocyclic ring closure of the most stable out,out-1 isomer to afford trans-2. Although the out,in-1 isomer is thermodynamically destabilized by 6.84 kcal mol(-1), the activation energy for its cyclization is slightly lower (5.29 kcal mol(-1) versus 5.95 kcal mol(-1)). The cyclization of the isomers of 1 with the C1-hydroxy group inwards showed considerably higher activation energies than their outwards counterparts. in,out-1, although close in energy to out,out-1 (difference of 1.57 kcal mol(-1)) required about 10 kcal mol(-1) more to reach the corresponding transition structure. The value measured for the activation energy of in,in-1 (17.32 kcal mol(-1)) eliminates the alternative conrotatory electrocyclization of this isomer to provide trans-2. Geometric scrambling by isomerization of the terminal C1--C2 bond of 1 is also unlikely to compete with electrocyclization. The possibility to interpret the 1-->2 reaction as a nonpericyclic cationic cyclization was also examined through NBO analysis, and the study of bond lengths and atomic charges. It was found that the 1-->2 concerted rearrangement benefits from charge separation at the cyclization termini, an effect not observed in related concerted electrocyclic processes, such as the classical Nazarov reaction 3-->4 or the cyclization of the isomeric 2-hydroxypentadienyl cation 5.
Pseudorotation reactions of biologically relevant oxyphosphoranes were studied by using density functional and continuum solvation methods. A series of 16 pseudorotation reactions involving acyclic and cyclic oxyphosphoranes in neutral and monoanionic (singly deprotonated) forms were studied, in addition to pseudorotation of PF5. The effect of solvent was treated by using three different solvation models for comparison. The barriers to pseudorotation ranged from 1.5 to 8.1 kcal mol(-1) and were influenced systematically by charge state, apicophilicity of ligands, intramolecular hydrogen bonding, cyclic structure and solvation. Barriers to pseudorotation for monoanionic phosphoranes occur with the anionic oxo ligand as the pivotal atom, and are generally lower than for neutral phosphoranes. The OCH3 groups were observed to be more apicophilic than OH groups, and hence pseudorotations that involve axial OCH3/equatorial OH exchange had higher reaction and activation free energy values. Solvent generally lowered barriers relative to the gas-phase reactions. These results, together with isotope 18O exchange experiments, support the assertion that dianionic phosphoranes are not sufficiently long-lived to undergo pseudorotation. Comparison of the density functional results with those from several semiempirical quantum models highlight a challenge for new-generation hybrid quantum mechanical/molecular mechanical potentials for non-enzymatic and enzymatic phosphoryl transfer reactions: the reliable modeling of pseudorotation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.