Anticipating cross-species transmission of zoonotic diseases requires an understanding of pathogen infection dynamics within natural reservoir hosts. Although bats might be a source of coronaviruses (CoVs) for humans, the drivers of infection dynamics in bat populations have received limited attention. We conducted a fine-scale 2-year longitudinal study of CoV infection dynamics in the largest colony of Reunion free-tailed bats ( Mormopterus francoismoutoui ), a tropical insectivorous species. Real-time PCR screening of 1080 fresh individual faeces samples collected during the two consecutive years revealed an extreme variation of the detection rate of bats shedding viruses over the birthing season (from 0% to 80%). Shedding pulses were repeatedly observed and occurred both during late pregnancy and within two months after parturition. An additional shedding pulse at the end of the second year suggests some inter-annual variations. We also detected viral RNA in bat guano up to three months after bats had left the cave. Our results highlight the importance of fine-scale longitudinal studies to capture the rapid change of bat CoV infection over months, and that CoV shedding pulses in bats may increase spillover risk.
During 2007–2009 and 2012–2014, avian influenza virus (AIV) was studied in a wild avian community of a northern Spanish wetland using non-invasive sampling methods and host identification by COI barcoding. The aim of this longitudinal study was to evaluate AIV dynamics in a natural wetland ecosystem, taking into account both virological aspects and ecological traits of hosts. Global AIV prevalence decreased significantly during the second sampling period (0.3%) compared to the first (6.6%). Circulating subtype distributions were also different between periods, with a noteworthy H5 and H7 subtype richness during the first sampling period. Mallard Anas platyrhynchos was identified as the main AIV host, although not all positive samples could be ascribed to the host. We modelled AIV prevalence with regard to the avian host community composition and meteorological data from the wetland. Statistical analysis revealed seasonal differences in AIV detection, with higher prevalence during the breeding season compared to other phenological events. The model also shows that the lower AIV prevalence during the second study period was associated with a significant reduction of breeding Anseriformes in the wetland, revealing a long-term fluctuation of AIV prevalence driven by the breeding Anseriformes community. This longitudinal study on AIV epidemiology in a natural ecosystem reveals that although prevalence follows seasonal and annual patterns, long-term prevalence fluctuation is linked to the breeding community composition and size. These results are relevant to understanding the influence of host ecology on pathogen transmission for preventing and managing influenza emergence.Electronic supplementary materialThe online version of this article (10.1186/s13567-019-0623-5) contains supplementary material, which is available to authorized users.
Aquatic wild birds have been intensively studied to better understand their role in avian influenza virus (AIV) maintenance and spread. To date, AIV surveillance has primarily focused on natural aquatic environments where different bird species aggregate and viral survival is enhanced. However, artificial habitats such as landfills are attracting substantial numbers of wild birds, AIV reservoir species included. The use of landfills as a predictable food source has significantly influenced population size, migratory traits, and feeding behavior of white storks (Ciconia ciconia) and black-headed gulls (Chroicocephalus ridibundus) among others. Considering the proximity of landfills to urban settlements and frequently poultry-farms, targeted monitoring of AIV in bird species that forage at landfills but are known to also frequent urban and agricultural habitats could be a useful means for monitoring of AIV, especially during periods of bird aggregation. During the wintering season 2014–2015, the prevalence of AIV in five avian species at two landfills in South-Central Spain was explored by rRT-PCR and species related temporal variation in AIV prevalence determined. We collected and tested 1,186 fresh fecal samples from white storks (N = 689), cattle egrets (Bubulcus ibis, N = 116) and mixed flocks of gulls (N = 381) as well as cloacal and oral swabs from five birds found dead. Seven samples contained AIV, five from gulls and one each from a stork and a cattle egret. Overall, AIV prevalence was 0.60%. No significant temporal variation was observed in AIV prevalence. Prevalence differed significantly among the sampled taxonomic groups, being highest in gulls (1.31%). H16N3 subtype was detected from a cattle egret and H11N9 subtype from a white stork, whereas gulls harbored both subtypes in addition to H11N3 subtype. H16 subtype detection in a cattle egret evidences its host range may not be restricted to gulls. Our results indicate that wild birds foraging at landfills may carry different LPAIV subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.