Abstract:Transaction-based energy (TE) management and control has become an increasingly relevant topic, attracting considerable attention from industry and the research community alike. As a result, new techniques are emerging for its development and actualization. This paper presents a comprehensive review of TE involving peer-to-peer (P2P) energy trading and also covering the concept, enabling technologies, frameworks, active research efforts and the prospects of TE. The formulation of a common approach for TE management modelling is challenging given the diversity of circumstances of prosumers in terms of capacity, profiles and objectives. This has resulted in divergent opinions in the literature. The idea of this paper is therefore to explore these viewpoints and provide some perspectives on this burgeoning topic on P2P TE systems. This study identified that most of the techniques in the literature exclusively formulate energy trade problems as a game, an optimization problem or a variational inequality problem. It was also observed that none of the existing works has considered a unified messaging framework. This is a potential area for further investigation.
Abstract:Rising awareness and emergence of smart technologies have inspired new thinking in energy system management. Whilst integration of distributed energy resources in micro-grids (MGs) has become the technique of choice for consumers to generate their energy, it also provides a unique opportunity to explore energy trading and sharing amongst them. This paper investigates peer-to-peer (P2P) communication architectures for prosumers' energy trading and sharing. The performances of common P2P protocols are evaluated under the stringent communication requirements of energy networks defined in IEEE 1547.3-2007. Simulation results show that the structured P2P protocol exhibits a reliability of 99.997% in peer discovery and message delivery whilst the unstructured P2P protocol yields 98%, both of which are consistent with the requirements of MG applications. These two architectures exhibit high scalability with a latency of 0.5 s at a relatively low bandwidth consumption, thus, showing promising potential in their adoption for prosumer to prosumer communication.
Deep Learning (DL) has been widely proposed for botnet attack detection in Internet of Things (IoT) networks. However, the traditional Centralized DL (CDL) method cannot be used to detect previously unknown (zero-day) botnet attack without breaching the data privacy rights of the users. In this paper, we propose Federated Deep Learning (FDL) method for zero-day botnet attack detection to avoid data privacy leakage in IoT edge devices. In this method, an optimal Deep Neural Network (DNN) architecture is employed for network traffic classification. A model parameter server remotely coordinates the independent training of the DNN models in multiple IoT edge devices, while Federated Averaging (FedAvg) algorithm is used to aggregate local model updates. A global DNN model is produced after a number of communication rounds between the model parameter server and the IoT edge devices. Zero-day botnet attack scenarios in IoT edge devices is simulated with the Bot-IoT and N-BaIoT data sets. Experiment results show that FDL model: (a) detects zero-day botnet attacks with high classification performance; (b) guarantees data privacy and security; (c) has low communication overhead (d) requires low memory space for the storage of training data; and (e) has low network latency. Therefore, FDL method outperformed CDL, Localized DL, and Distributed DL methods in this application scenario. Index Terms-Cybersecurity, botnet detection, federated learning, deep learning, deep neural network, Internet of Things. I. INTRODUCTION B OTNET attack is a serious cyber security challenge facing the Internet of Things (IoT) [1]-[3]. In our context, a botnet is a network of compromised devices that is used to launch cyber attack against critical infrastructures [4]. This cyber attack may be in form of Denial of Service (DoS), Distributed DoS (DDoS), reconnaissance, or data theft [5].
Potential benefits of peer-to-peer energy trading and sharing (P2P-ETS) include the opportunity for prosumers to exchange flexible energy for additional income, whilst reducing the carbon footprint. Establishing an optimal energy routing path and matching energy demand to supply with capacity constraints are some of the challenges affecting the full realisation of P2P-ETS. In this paper, we proposed a slimemould inspired optimisation method for addressing the path cost problem for energy routing and the capacity constraint of the distribution lines for congestion control. Numerical examples demonstrate the practicality and flexibility of the proposed method for a large number of peers (15 − 2000) over existing optimised path methods. The result shows up to 15% cost savings as compared to a non-optimised path. The proposed method can be used to control congestion on distribution links, provide alternate paths in cases of disruption on the optimal path, and match prosumers in the local energy market.
Algorithms for distributed coordination and control are increasingly being used in smart grid applications including peer-to-peer energy trading and sharing to improve reliability and efficiency of the power system. However, for realistic deployment of these algorithms, their designs should take into account the suboptimal conditions of the communication network, in particular the communication links that connect the energy trading entities in the energy network. This study proposes a distributed adaptive primal (DAP) routing algorithm to facilitate communication and coordination among proactive prosumers in an energy network over imperfect communication links. The proposed technique employs a multi-commodity flow optimization scheme in its formulation with the objective to minimize both the communication delay and loss of energy transactional messages due to suboptimal network conditions. Taking into account realistic constraints relating to network delay and communication link capacity between the peers, the DAP routing algorithm is used to evaluate network performance using various figures of merit such as probability of signal loss, message delay, congestion and different network topologies. Further, we address the link communication delay problem by redirecting traffic from congested links to less utilized ones. The results show that the proposed routing algorithm is robust to packet loss on the communication links with a 20% reduction in delay compared with hop-by-hop adaptive link state routing algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.