Reinforced concrete buildings with moment-resisting frames comprising beam–column joints (without joint shear reinforcement) designed prior to introduction of seismic codes are shear deficient when subjected to seismic loading, thereby mostly fail in shear at the core of the beam–column joint. However, those designed to the new seismic codes may fail by flexural hinging at the interface of the beam–column joint due to the yielding of the beam reinforcement at the location of highest stress demand (usually the beam–column joint interface). The shear failure has been precluded through the provision of transverse reinforcement at the joint in new design and the use of carbon fiber–reinforced polymer retrofitting in old buildings. Plastic hinge formation at the interface of the beam–column joint is critical because of its penetration into the joint and its effect on bond deterioration. In this study, eight corner-external beam–column joint specimens of 1/3 scale of a typical moment-resisting frame, made without transverse reinforcement, were tested for monotonic and reversed cyclic test under displacement-controlled regime. The control specimens failed by flexural hinging at the beam–column joint interface. The experimental results have been validated using the finite element model. The specimens were retrofitted with unidirectional carbon fiber–reinforced polymer of different layers and different length. After retrofitting, the plastic hinge was relocated to the curtailment end of the carbon fiber–reinforced polymer. The relocation of the plastic hinge resulted in higher load capacity and ductility.
The performance of fiber reinforced polymer externally bonded to concrete is greatly influenced by the environmental conditions to which it is exposed during service. Temperature and humidity are the two common environmental factors that alter the bond behavior of externally bonded fiber reinforced polymer. This paper reviews the experimental and computational approaches used to evaluate the hygrothermal effects—that is, the effect of temperature and humidity—on the durability of the fiber reinforced polymer–concrete bond, as well as on the bond’s performance under loading conditions. Some experimental testing conducted in the laboratory and in situ are critically reviewed and presented. Implemented approaches for improving bond performance under hygrothermal conditions and their modeling techniques are also presented. The paper concludes by discussing the review’s salient issues. The ongoing wide application of externally bonded fiber reinforced polymer creates opportunities for new research on improving and predicting the bond strength of fiber reinforced polymer concrete under hygrothermal conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.