Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that perform oxidative cleavage of recalcitrant polysaccharides. We have purified and characterized a recombinant family AA9 LPMO, LPMO9B, from Gloeophyllum trabeum (GtLPMO9B) which is active on both cellulose and xyloglucan. Activity of the enzyme was tested in the presence of three different reductants: ascorbic acid, gallic acid, and 2,3-dihydroxybenzoic acid (2,3-DHBA). Under standard aerobic conditions typically used in LPMO experiments, the first two reductants could drive LPMO catalysis whereas 2,3-DHBA could not. In agreement with the recent discovery that H2O2 can drive LPMO catalysis, we show that gradual addition of H2O2 allowed LPMO activity at very low, substoichiometric (relative to products formed) reductant concentrations. Most importantly, we found that while 2,3-DHBA is not capable of driving the LPMO reaction under standard aerobic conditions, it can do so in the presence of externally added H2O2. At alkaline pH, 2,3-DHBA is able to drive the LPMO reaction without externally added H2O2, and this ability overlaps entirely the endogenous generation of H2O2 by GtLPMO9B-catalyzed oxidation of 2,3-DHBA. These findings support the notion that H2O2 is a cosubstrate of LPMOs and provide insight into how LPMO reactions depend on, and may be controlled by, the choice of pH and reductant. IMPORTANCE Lytic polysaccharide monooxygenases promote enzymatic depolymerization of lignocellulosic materials by microorganisms due to their ability to oxidatively cleave recalcitrant polysaccharides. The properties of these copper-dependent enzymes are currently of high scientific and industrial interest. We describe a previously uncharacterized fungal LPMO and show how reductants, which are needed to prime the LPMO by reducing Cu(II) to Cu(I) and to supply electrons during catalysis, affect enzyme efficiency and stability. The results support claims that H2O2 is a natural cosubstrate for LPMOs by demonstrating that when certain reductants are used, catalysis can be driven only by H2O2 and not by O2. Furthermore, we show how auto-inactivation resulting from endogenous generation of H2O2 in the LPMO-reductant system may be prevented. Finally, we identified a reductant that leads to enzyme activation without any endogenous H2O2 generation, allowing for improved control of LPMO reactivity and providing a valuable tool for future LPMO research.
Acetylation of wood can provide protection against wood deteriorating fungi, but the exact degradation mechanism remains unclear. The aim of this study was to determine the effect of acetylation of Pinus radiata wood (weight percent gain 13, 17 and 21%) on the expression of genes involved in decay by brown-rot fungus Rhodonia placenta. Gene expression analysis using qRT-PCR captured incipient to advanced decay stages. As expected the initiation of decay was delayed as a result the degree of acetylation. However, once decay was established, the rate of degradation in acetylated samples was similar to that of unmodified wood. This suggests a delay in decay rather than an absolute protection threshold at higher acetylation levels. In accordance with previous studies, the oxidative system of R. placenta was more active in wood with higher degrees of acetylation and expression of cellulose active enzymes was delayed for acetylated samples compared to untreated samples. The reason for the delay in the latter might be because of the slower diffusion rate in acetylated wood or that partially acetylated cellobiose may be less effective in triggering production of saccharification enzymes. Enzymes involved in hemicellulose and pectin degradation have previously not been focused on in studies of degradation of acetylated wood. Surprisingly, CE16 carbohydrate esterase, assumed to be involved in deacetylation of carbohydrates, was expressed
LPMOs are mono-copper enzymes that oxidatively degrade various polysaccharides. Genes encoding LPMOs in the AA9 family are abundant in filamentous fungi while their multiplicity remains elusive. We describe a detailed functional characterization of six AA9 LPMOs from the ascomycetous fungus Thermothielavioides terrestris LPH172 (syn. Thielavia terrestris ). These six LPMOs were shown to be upregulated during growth on different lignocellulosic substrates in our previous study. Here we produced them heterologously in Pichia pastoris and tested their activity on various model and native plant cell wall substrates. All six Tt AA9 LPMOs produced hydrogen peroxide in the absence of polysaccharide substrate and displayed peroxidase-like activity on a model substrate, yet only five of them were active on selected cellulosic substrates. Tt LPMO9A and Tt LPMO9E were also active on birch acetylated glucuronoxylan, but only when the xylan was combined with phosphoric acid-swollen cellulose (PASC). Another of the six AA9s, Tt LPMO9G, was active on spruce arabinoglucuronoxylan mixed with PASC. Tt LPMO9A, Tt LPMO9E, Tt LPMO9G and Tt LPMO9T could degrade tamarind xyloglucan and beechwood xylan when combined with PASC. Interestingly, none of the tested enzymes were active on wheat arabinoxylan, konjac glucomannan, acetylated spruce galactoglucomannan, or cellopentaose. Overall, these functional analyses support the hypothesis that the multiplicity of the fungal LPMO genes assessed in this study relates to the complex and recalcitrant structure of lignocellulosic biomass. Our study also highlights the importance of using native substrates in functional characterization of LPMOs as we were able to demonstrate distinct, previously unreported xylan-degrading activities of AA9 LPMOs using such substrates. Importance The discovery of LPMOs in 2010 has revolutionized the industrial biotechnology field, mainly by increasing the efficiency of cellulolytic enzyme cocktails. Nonetheless, the biological purpose for the multiplicity of LPMO-encoding genes in filamentous fungi has remained an open question. Here, we address this point by showing that six AA9 LPMOs from a single fungal strain have varying substrate preferences and activities on tested cellulosic and hemicellulosic substrates, including several native xylan substrates. Importantly, several of these activities could only be detected when using co-polymeric substrates that likely resemble plant cell walls, more than single fractionated polysaccharides do. Our results suggest that LPMOs have evolved to contribute to the degradation of different complex structures in plant cell walls where different biomass polymers are closely associated. This knowledge together with the elucidated novel xylanolytic activities could aid in further optimization of enzymatic cocktails for efficient degradation of lignocellulosic substrates and more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.