Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-mm (titanium-120) or 230-mm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 AE 7.1 mm 3 (titanium-120, p ¼ 0.015) and 18.7 AE 8.0 mm 3 (titanium-230, p ¼ 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 AE 5.1 mm 3 ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. ß
BackgroundAlthough pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC) metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation.MethodsBMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition), expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK) signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p < 0.05.ResultsBiochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control.Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and -3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-κB ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation.ConclusionsPEMF exposure of differentiating human BMSCs enhanced mineralization and seemed to induce differentiation at the expense of proliferation. The osteogenic stimulus of PEMF was confirmed by the up-regulation of several osteogenic marker genes in the PEMF treated group, which preceded the deposition of mineral itself. These findings indicate that PEMF can directly stimulate osteoprogenitor cells towards osteogenic differentiation. This supports the theory that PEMF treatment may recruit these cells to facilitate an osteogenic response in vivo.
The use of bioengineered cell constructs for the treatment of bone defects has received much attention of late. Often, bone marrow stromal cells (BMSCs) are used that are in vitro-stimulated toward the osteogenic lineage, aiming at intramembranous bone formation. The success of this approach has been disappointing. A major concern with these constructs is core degradation and necrosis caused by lack of vascularization. We hypothesized that stimulation of cells toward the endochondral ossification process would be more successful. In this study, we tested how in vitro priming of human BMSCs (hBMSCs) along osteogenic and chondrogenic lineages influences survival and osteogenesis in vivo. Scaffolds that were pre-cultured on chondrogenic culture medium showed collagen type II and collagen type X production. Moreover, vessel ingrowth was observed. Priming along the osteogenic lineage led to a mineralized matrix of poor quality, with few surviving cells and no vascularization. We further characterized this process in vitro using pellet cultures. In vitro, pellets cultured in chondrogenic medium showed progressive production of collagen type II and collagen type X. In the culture medium of these chondrogenic cultured pellets, vascular endothelial growth factor (VEGF) release was observed at days 14, 21, and 35. When pellets were switched to culture medium containing beta-glycerophosphate, independent of the presence or absence of transforming growth factor beta (TGF-beta), mineralization was observed with a concomitant reduction in VEGF and matrix metalloproteinase (MMP) release. By showing that VEGF and MMPs are produced in chondrogenically differentiated hBMSCs in vitro, we demonstrated that these cells produce factors that are known to be important for the induction of vascularization of the matrix. Inducing mineralization in this endochondral process does, however, severely diminish these capacities. Taken together, these data suggest that optimizing chondrogenic priming of hBMSCs may further improve vessel invasion in bioengineered constructs, thus leading to an alternative and superior approach to bone repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.