Background Clinical registries, which capture information about the health and healthcare use of patients with a health condition or treatment, often contain patient-reported outcomes (PROs) that provide insights about the patient’s perspectives on their health. Missing data can affect the value of PRO data for healthcare decision-making. We compared the precision and bias of several missing data methods when estimating longitudinal change in PRO scores. Methods This research conducted analyses of clinical registry data and simulated data. Registry data were from a population-based regional joint replacement registry for Manitoba, Canada; the study cohort consisted of 5631 patients having total knee arthroplasty between 2009 and 2015. PROs were measured using the 12-item Short Form Survey, version 2 (SF-12v2) at pre- and post-operative occasions. The simulation cohort was a subset of 3000 patients from the study cohort with complete PRO information at both pre- and post-operative occasions. Linear mixed-effects models based on complete case analysis (CCA), maximum likelihood (ML) and multiple imputation (MI) without and with an auxiliary variable (MI-Aux) were used to estimate longitudinal change in PRO scores. In the simulated data, bias, root mean squared error (RMSE), and 95% confidence interval (CI) coverage and width were estimated under varying amounts and types of missing data. Results Three thousand two hundred thirty (57.4%) patients in the study cohort had complete data on the SF-12v2 at both occasions. In this cohort, mixed-effects models based on CCA resulted in substantially wider 95% CIs than models based on ML and MI methods. The latter two methods produced similar estimates and 95% CI widths. In the simulation cohort, when 50% of the data were missing, the MI-Aux method, in which a single hypothetical auxiliary variable was strongly correlated (i.e., 0.8) with the outcome, reduced the 95% CI width by up to 14% and bias and RMSE by up to 50 and 45%, respectively, when compared with the MI method. Conclusions Missing data can substantially affect the precision of estimated change in PRO scores from clinical registry data. Inclusion of auxiliary information in MI models can increase precision and reduce bias, but identifying the optimal auxiliary variable(s) may be challenging.
Purpose This work is part of an international, interdisciplinary initiative to synthesize research on response shift in results of patient-reported outcome measures. The objective is to critically examine current response shift methods. We additionally propose advancing new methods that address the limitations of extant methods. Methods Based on literature reviews, this critical examination comprises design-based, qualitative, individualized, and preference-based methods, latent variable models, and other statistical methods. We critically appraised their definition, operationalization, the type of response shift they can detect, whether they can adjust for and explain response shift, their assumptions, and alternative explanations. Overall limitations requiring new methods were identified. Results We examined 11 methods that aim to operationalize response shift, by assessing change in the meaning of one’s self-evaluation. Six of these methods distinguish between change in observed measurements (observed change) and change in the construct that was intended to be measured (target change). The methods use either (sub)group-based or individual-level analysis, or a combination. All methods have underlying assumptions to be met and alternative explanations for the inferred response shift effects. We highlighted the need to address the interpretation of the results as response shift and proposed advancing new methods handling individual variation in change over time and multiple time points. Conclusion No single response shift method is optimal; each method has strengths and limitations. Additionally, extra steps need to be taken to correctly interpret the results. Advancing new methods and conducting computer simulation studies that compare methods are recommended to move response shift research forward.
Multimorbidity adversely effects improvements in HRQoL following THA and TKA. Our findings are relevant to healthcare providers focused on the management of patients with chronic conditions and for administrators reporting and monitoring the outcomes of THA and TKA. Cite this article: Bone Joint J 2018;100-B:1168-74.
IntroductionAdministrative health data capture diagnoses using the International Classification of Diseases (ICD), which has multiple versions over time. To facilitate longitudinal investigations using these data, we aimed to map diagnoses identified in three ICD versions – ICD-8 with adaptations (ICDA-8), ICD-9 with clinical modifications (ICD-9-CM), and ICD-10 with Canadian adaptations (ICD-10-CA) – to mutually exclusive chronic health condition categories adapted from the open source Clinical Classifications Software (CCS). MethodsWe adapted the CCS crosswalk to 3-digit ICD-9-CM codes for chronic conditions and resolved the one-to-many mappings in ICD-9-CM codes. Using this adapted CCS crosswalk as the reference and referring to existing crosswalks between ICD versions, we extended the mapping to ICDA-8 and ICD-10-CA. Each mapping step was conducted independently by two reviewers and discrepancies were resolved by consensus through deliberation and reference to prior research. We report the frequencies, agreement percentages and 95% confidence intervals (CI) from each step. ResultsWe identified 354 3-digit ICD-9-CM codes for chronic conditions. Of those, 77 (22%) codes had one-to-many mappings; 36 (10%) codes were mapped to a single CCS category and 41 (12%) codes were mapped to combined CCS categories. In total, the codes were mapped to 130 adapted CCS categories with an agreement percentage of 92% (95% CI: 86%–98%). Then, 321 3-digit ICDA-8 codes were mapped to CCS categories with an agreement percentage of 92% (95% CI: 89%–95%). Finally, 3583 ICD-10-CA codes were mapped to CCS categories; 111 (3%) had a fair or poor mapping quality; these were reviewed to keep or move to another category (agreement percentage=77% [95% CI: 69%–85%]). ConclusionsWe developed crosswalks for three ICD versions (ICDA-8, ICD-9-CM, and ICD-10-CA) to 130 clinically meaningful categories of chronic health conditions by adapting the CCS classification. These crosswalks will benefit chronic disease studies spanning multiple decades of administrative health data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.