Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision variables defined in the routing algorithm. The strengths and weaknesses of the choice of the decision variables used in the design of these energy-efficient and energy-balanced routing protocols are emphasised. Finally, we suggest possible research directions in order to optimize the energy consumption in sensor networks.
The advancement in wireless communication applications encourages the use of effective and efficient channel estimation (CE) techniques because of the varying behaviour of the Rayleigh fading channel. In most cases, the emphasis of most proposed CE schemes is to improve the CE performance and complexity for ensuring quality signal reception and improved system throughput. Candidate waveforms whose designs are based on filter bank multi-carrier (FBMC) modulation techniques such as filter bank orthogonal frequency division multiplexing based on offset quadrature amplitude modulation (OFDM-OQAM), universal filtered multicarrier (UFMC) and generalised frequency division multiplexing based on offset quadrature amplitude modulation (GFDM-OQAM) are no exception to the use of these proposed CE techniques in the literature. These schemes are considered as potential waveform candidates for the physical/media access control layer of the emerging fifth generation (5G) networks. Therefore, pinpoint CE techniques represent an important requirement for these waveforms to attain their full potentials. In this regard, this paper reviews the concept of CE as applicable to these waveforms as well as other waveform candidates under consideration in the emerging 5G networks. Since the design of the majority of the waveform candidates is filter based, a review of the general filter design considerations is presented in this paper. Secondly, we review general CE techniques for candidate waveforms of next generation networks and classify some of the studied CE techniques. In particular, we classify the CE schemes used in filter bank OFDM-OQAM and GFDM-OQAM based transceivers and present a performance comparison of some of these CE schemes. Besides, the paper reviews the performances of two linear CE schemes and three adaptive based CE schemes for two FBMC based waveform candidates assuming near perfect reconstruction (NPR) and non-perfect reconstruction (Non-PR) filter designs over slow and fast frequency selective Rayleigh fading channels. The results obtained are documented through computer simulations, where the performances of the studied CE schemes in terms of the normalised mean square error (NMSE) are analysed. Lastly, we summarise the findings of this work and suggest possible research directions in order to improve the potentials of the studied candidate waveforms over Rayleigh fading channels.
A symbol level iterative soft decision (SD) algorithm for Reed-Solomon codes based on parity-check equations is developed. This is achieved by transforming the systematic parity-check matrix according to some rules. The rules are based on the soft reliability information matrix derived from the received vector. The symbol error rate performance of the resulting algorithm is documented through computer simulation and compared with the hard decision Berlekamp-Massey (B-M) algorithm, and the Koetter and Vardy-Guruswami and Sudan (KV-GS) algorithm. The result verifies that the iterative (SD) algorithm outperforms the KV-GS and B-M algorithms by a significant margin while maintaining a reasonable decoding time complexity level.
Cetaceans have elicited the attention of researchers in recent decades due to their importance to the ecosystem and their economic values. They use sound for communication, echolocation and other social activities. Their sounds are highly non-stationary, transitory and range from short to long sounds. Passive acoustic monitoring (PAM) is a popular method used for monitoring cetaceans in their ecosystems. The volumes of data accumulated using PAM are usually big, so they are difficult to analyze using manual inspection. Therefore different techniques with mixed outcomes have been developed for the automatic detection and classification of signals of different cetacean species. So far, no single technique developed is perfect to detect and classify the vocalizations of over 82 known species due to variability in time-frequency, difference in the amplitude among species and within species' vocal repertoire, physical environment, among others. The accuracy of any detector or classifier depends on the technique adopted as well as the nature of the signal to be analyzed. In this article, we review the existing techniques for the automatic detection and classification of cetacean vocalizations. We categorize the surveyed techniques, while emphasizing the advantages and disadvantages of these techniques. The article suggests possible research directions that can improve existing detection and classification techniques. In addition, the article recommends other suitable techniques that can be used to analyze non-linear and non-stationary signals such as the cetaceans' signals. Several research have been dedicated to this topic, however, there is no review of these past results that gives a quick overview in the area of cetacean detection and classification. This review will help researchers and practitioners in the field to make insightful decisions based on their requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.