Consider the regression model y = beta 0 1 + Xbeta + epsilon. Recently, the Liu estimator, which is an alternative biased estimator beta L (d) = (X'X + I) -1 (X'X + dI)beta OLS , where 0>d>1 is a parameter, has been proposed to overcome multicollinearity . The advantage of beta L (d) over the ridge estimator beta R (k) is that beta L (d) is a linear function of d. Therefore, it is easier to choose d than to choose k in the ridge estimator. However, beta L (d) is obtained by shrinking the ordinary least squares (OLS) estimator using the matrix (X'X + I) -1 (X'X + dI) so that the presence of outliers in the y direction may affect the beta L (d) estimator. To cope with this combined problem of multicollinearity and outliers, we propose an alternative class of Liu-type M-estimators (LM-estimators) obtained by shrinking an M-estimator beta M , instead of the OLS estimator using the matrix (X'X + I) -1 (X'X + dI).
In this paper, we introduce a new family of multivariate distributions as the scale mixture of the multivariate power exponential distribution introduced by Go´mez et al. (Comm. Statist. Theory Methods 27(3) (1998) 589) and the inverse generalized gamma distribution. Since the resulting family includes the multivariate t distribution and the multivariate generalization of the univariate GT distribution introduced by McDonald and Newey (Econometric Theory 18 (11) (1988) 4039) we call this family as the ''multivariate generalized t-distributions family'', or MGT for short. We show that this family of distributions belongs to the elliptically contoured distributions family, and investigate the properties. We give the stochastic representation of a random variable distributed as a multivariate generalized t distribution. We give the marginal distribution, the conditional distribution and the distribution of the quadratic forms. We also investigate the other properties, such as, asymmetry, kurtosis and the characteristic function. r
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.