Follicular lymphoma (FL) is a cancer of lymph system and it is the second most common lymphoid malignancy in the western world. Currently, the risk stratification of FL relies on histological grading method, where pathologists evaluate hematoxilin and eosin (H&E) stained tissue sections under a microscope as recommended by the World Health Organization. This manual method requires intensive labor in nature.Due to the sampling bias, it also suffers from inter-and intra-reader variability and poor reproducibility. We are developing a computer-assisted system to provide quantitative assessment of FL images for more consistent evaluation of FL. In this study, we proposed a statistical framework to classify FL images based on their histological grades. We introduced model-based intermediate representation (MBIR) of cytological components that enables higher level semantic description of tissue characteristics. Moreover, we introduced a novel color-texture analysis approach that combines the MBIR with low level texture features, which capture tissue characteristics at pixel level. Experimental results on real follicular lymphoma images demonstrate that the combined feature space improved the accuracy of the system significantly. The implemented system can identify the most aggressive FL (grade III) with 98.9% sensitivity and 98.7% specificity and the overall classification accuracy of the system is 85.5%.
Neuroblastoma (NB) is one of the most frequently occurring cancerous tumors in children. The current grading evaluations for patients with this disease require pathologists to identify certain morphological characteristics with microscopic examinations of tumor tissues. Thanks to the advent of modern digital scanners, it is now feasible to scan cross-section tissue specimens and acquire whole-slide digital images. As a result, computerized analysis of these images can generate key quantifiable parameters and assist pathologists with grading evaluations. In this study, image analysis techniques are applied to histological images of haematoxylin and eosin (H&E) stained slides for identifying image regions associated with different pathological components. Texture features derived from segmented components of tissues are extracted and processed by an automated classifier group trained with sample images with different grades of neuroblastic differentiation in a multi-resolution framework. The trained classification system is tested on 33 whole-slide tumor images. The resulting whole-slide classification accuracy produced by the computerized system is 87.88%. Therefore, the developed system is a promising tool to facilitate grading whole-slide images of NB biopsies with high throughput.
We are developing a computer-aided prognosis system for neuroblastoma (NB), a cancer of the nervous system and one of the most malignant tumors affecting children. Histopathological examination is an important stage for further treatment planning in routine clinical diagnosis of NB. According to the International Neuroblastoma Pathology Classification (the Shimada system), NB patients are classified into favorable and unfavorable histology based on the tissue morphology. In this study, we propose an image analysis system that operates on digitized H&E stained whole-slide NB tissue samples and classifies each slide as either stroma-rich or stroma-poor based on the degree of Schwannian stromal development. Our statistical framework performs the classification based on texture features extracted using co-occurrence statistics and local binary patterns. Due to the high resolution of digitized whole-slide images, we propose a multi-resolution approach that mimics the evaluation of a pathologist such that the image analysis starts from the lowest resolution and switches to higher resolutions when necessary. We employ an offine feature selection step, which determines the most discriminative features at each resolution level during the training step. A modified k-nearest neighbor classifier is used to determine the confidence level of the classification to make the decision at a particular resolution level. The proposed approach was independently tested on 43 whole-slide samples and provided an overall classification accuracy of 88.4%.
In the diagnosis of preinvasive breast cancer, some of the intraductal proliferations pose a special challenge. The continuum of intraductal breast lesions includes the usual ductal hyperplasia (UDH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS). The current standard of care is to perform percutaneous needle biopsies for diagnosis of palpable and image-detected breast abnormalities. UDH is considered benign and patients diagnosed UDH undergo routine follow-up, whereas ADH and DCIS are considered actionable and patients diagnosed with these two subtypes get additional surgical procedures. About 250,000 new cases of intraductal breast lesions are diagnosed every year. A conservative estimate would suggest that at least 50% of these patients are needlessly undergoing unnecessary surgeries. Thus improvement in the diagnostic re-producibility and accuracy is critically important for effective clinical management of these patients. In this study, a prototype system for automatically classifying breast microscopic tissues to distinguish between UDH and actionable subtypes (ADH and DCIS) is introduced. This system automatically evaluates digitized slides of tissues for certain cytological criteria and classifies the tissues based on the quantitative features derived from the images. The system is trained using a total of 327 regions of interest (ROIs) collected across 62 patient cases and tested with a sequestered set of 149 ROIs collected across 33 patient cases. An overall accuracy of 87.9% is achieved on the entire test data. The test accuracy of 84.6% obtained with borderline cases (26 of the 33 test cases) only, when compared against the diagnostic accuracies of nine pathologists on the same set (81.2% average), indicates that the system is highly competitive with the expert pathologists as a stand-alone diagnostic tool and has a great potential in improving diagnostic accuracy and reproducability when used as a “second reader” in conjunction with the pathologists.
Follicular lymphoma (FL) is one of the most common lymphoid malignancies in the western world. FL has a variable clinical course and important clinical treatment decisions for FL patients are based on histological grading, which is done by manual counting of large malignant cells called centroblasts (CB) in ten standard microscopic high power fields from H&E-stained tissue sections. This method is tedious and subjective; as a result suffers from considerable inter- and intra-reader variability even when used by expert pathologists. In this study, we present a computer-aided detection system for automated identification of CB cells from H&E-stained FL tissue samples. The proposed system uses a unitone conversion to obtain a single channel image that has the highest contrast. From the resulting image, which has a bi-modal distribution due to the H&E-stain, a cell-likelihood image is generated. Finally, a two-step CB detection procedure is applied. In the first step, we reduce evident non-CB cells based on size and shape. In the second step CB detection is further refined by learning and utilizing the texture distribution of non-CB cells. We evaluated the proposed approach on 100 region of interest images extracted from ten distinct tissue samples and obtained a promising 80.7% detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.