Solid-liquid micro-fluidised beds (FBs), i.e. fluidisation of micro-particles in sub-centimetre beds, hold promise of applications in the microfluidics and micro-process technology context. This is mainly due to fluidised particles providing enhancement of mixing, mass and heat transfer under the low Reynolds number flows that dominate in micro-devices. Albeit there are quite a few studies of solid-liquid micro-fluidised beds, we are presenting the first study of a micro-circulating fluidised bed. The present experimental research was performed in a micro-circulating fluidised bed which was made by micro-machining channels of 1mm 2 cross section in Perspex. PMMA and soda lime glass micro-particles were used as the fluidised particles and tap water as the fluidising liquid to study flow regime transition for this micro-circulating fluidised bed. The results are in line with macroscopic observation that the critical transition velocity from fluidization to circulating regime is very dependent on solid inventory but once the inventory is high enough it is approximately equal to the particle terminal velocity. However, the transitional velocity is a weakly dependent on wall effect and surface forces confirming the importance of these two properties in a micro-fluidised bed systems. Similarly the transitional velocity to transporting regime is a strong function of surface forces. Finally, combining these results with our previous result on conventional fluidization indicated that map of solid-liquid fluidisation in a micro-circulating fluidised bed system is constructed showing conventional fluidisation, circulating fluidisation and a transport regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.